
JavaScript
glossary on demand

JS

a mini guide to modern JavaScript programming
through common terminology explanation

Andrea Giammarchi

@Web Reflection

JavaScript glossary on demand
a mini guide to modern JavaScript programming
through common terminology explanation

© 2016 Andrea Giammarchi

Tweet This Book!
Please help Andrea Giammarchi by spreading the word about this book on
Twitter!
The suggested hashtag for this book is #jsglossary.
Find out what other people are saying about the book by clicking on this link
to search for this hashtag on Twitter:
https://twitter.com/search?q=#jsglossary

http://twitter.com
https://twitter.com/search?q=%23jsglossary
https://twitter.com/search?q=%23jsglossary

to the vibrant JavaScript community

Contents

1
audience: who is this book for 1
how to read this book 1
special thanks 1
technical editor 1
the author 2
what this book is about 2
what this book is not 2
debug 3
comments 3
operators 3
parenthesis 4
brackets 4
references 5
variables 5
constants 6
types 6
invoke 8
function declaration VS function expression 8
named function expressions 9
scope 10
private and nested scope 10
context 11
global context 12
method context 13
invoking a function via call or apply 14
explicit context 15
arguments 16
Array and generic collections iteration 18
for loop 18
incremental ++ operator 19
Array methods 21
array.forEach(callback, context) 21

CONTENTS

array.map(callback, context) → newArray 22
array.filter(callback, context) → newArray 23
array.some(callback, context) → boolean 23
array.every(callback, context) → boolean 24
array.indexOf(value, fromIndex) → number 24
prototype and prototypal inheritance 25
genericA.isPrototypeOf(genericB) → boolean 26
Object.prototype 27
object.toString() → string 28
native 29
class 30
constructor 31
instance 32
inheritance 33
the in operator 34
for/in loop 34
enumerable 35
object.propertyIsEnumerable(name) → boolean 35
object.hasOwnProperty(name) → boolean 36
shared properties 36
getters and setters 38
descriptors 40
Object.defineProperty(obj, name, descriptor) → obj 40
try catch finally 42
which descriptor for what 43
common property descriptor 43
common class and native method descriptor 44
common defensive method descriptor 44
common lazy property descriptor 44
Object.getOwnPropertyDescriptor(obj, name) → desc 45
Object.defineProperties(obj, descriptors) → obj 46
delete 46
Object.getOwnPropertyNames(obj) → arrayOfAllNames 47
Object.keys(obj) → arrayOfOwnEnumerableNames 47
public and public static 47
extends 49
super 50
implements 51
interfaces 51
trait and mixin 52
if else switch and conditional logic 53
conditional statement 53

CONTENTS

ternary operator 54
switch statement 55
logical || operator (read as OR) 55
logical && operator (read as AND) 56
truthy and falsy values 57
antipattern 57
DOM 57
tree 58
Web IDL 59
EventTarget registration interface 59
void 60
DOMString 60
EventListener 60
EventListener using a function 62
function bind 63
Event 64
browser events 65
bubbling and capturing 65
event.stopPropagation() 66
event.preventDefault() 67
CustomEvent 67
EventEmitter 68
signature 68
parameters 69
node.js events 69
WeakMap 70
Symbol 71
primitives 71
Object.getOwnPropertySymbols(obj) → arrayOfSymbols 72
shared Symbols 72
special Symbols 73
for/of loop 73
fat arrow 73
generator 74
yield 75
generator.next(value) → {done:boolean, value:any} 76
generator.throw(error) 77
Promises 77
promise.then(resolved, rejected) → newPromise 79
promise.then(resolved).catch(anyError) → newPromise 79
promise.then(fn).then(fn).then(fn) → newPromise 80
Promise.all(arrayOfPromises) → newPromise 80

CONTENTS

Promise.resolve(value) → newPromise 81
Generators and Promises 82
Timers 84
setTimeout(fn, delay, arg1, arg2, argN) → timerIdentifier 84
clearTimeout(timerIidentifier) 84
setInterval(fn, delay, arg1, arg2, argN) → timerIdentifier 84
clearInterval(timerIdentifier) 85
requestAnimationFrame(fn) → rafIdentifier 85
process.nextTick(fn) 86
requestIdleCallback(fn, waitExpiresIn) → ricIdentifier 86
template strings 87
tagged template strings 87
regular expression 88
JSON 89
Math 89
parseInt(string, base) → integerNumber 89
parseFloat(string) → floatNumber 89

Recent ECMAScript features 90
let declaration 90
rest parameters 91
spread operator 91
Map 91
Set, and WeakSet 92
Proxy 92
destructuring 92

JavaScript F.A.Q. on demand 93
Useful links 94

audience: who is this book for

For absolute beginners or more advanced developers, this book explains the
most common terms used in JavaScript programming, client or server, through
examples.
If you cannot understand technical articles, this book will explain each term.
If you are looking to refresh and update your knowledge about modern
terminology, patterns, and their applications, this book will also help you.

how to read this book

This book could somehow be compared to a waterfall: it starts quietly, by
describing simple basic terms, and then accelerates until it coversmostmodern
features towards the end.
Being a compact book I recommend you do a quick read-through first, and once
completed, go back to any specific words, so that every term is clear.

special thanks

To every person that believed in me and helped me with this idea.
In particular: Robert Woloschanowski, Stoyan Stefanov, Arianna De Mario,
Cinzia Giammarchi, Maria Teresa Sardella, Luca Vavassori, every member of the
TC39 and the ECMAScript Mailing List who in all these years has been patient
enough to deal with my questions and rants.

technical editor

A special thanks goes to Stoyan Stefanov, who is the author of JavaScript
Patterns, Web Performance Daybook Volume 2, JavaScript for PHP Developers
and others O’REILLY best sellers, helped me reviewing content as well as code
and examples.

1

2

the author

Andrea Giammarchi is an experienced Web and Mobile Development consul-
tant, formerly a Senior Software Engineer at Twitter, previously at Facebook,
NOKIA, and others.

what this book is about

Many online articles, as well as many other books, take for granted that the
reader knows the meaning of every single term used to describe generic
software related topics.
The truth is that there are many people that would like to understand “what the
heck” is all this programming about, the same people that might stop reading
the article, or feel confused, the very moment they come across terms such as
variable, reference, context, scope, object, and so on.While I can instantly assure
everyone that programming is not always trivial, and it’s surely not something
you can possibly learn overnight, or maybe just reading a couple of books, I
also strongly believe one really shouldn’t need a degree in Computer Science
to understand basic articles that, for example, simply use some JavaScript to
click a button to show an alert …
… and “what is an alert?“ It’s a modal window with a warning message and an
OK button.
… and “what does modal mean?” It means it blocks the interaction with the
program.
Do you see how many questions already? And the more we describe, the more
we understand, the more other terms come up, needing more answers and
more explanations.
Well, this is why I’ve written this “JavaScript glossary on demand”, hoping that
you won’t feel disoriented ever again while reading online articles, or other
more advanced books.

what this book is not

Every single term in this book could require a book of its own to describe all
its glory, history, or “gotchas”. JavaScript (JS) has been around for more than
20 years now, and while I’ve tried to keep things as simple as possible, the
aim is to explain modern JS first, since it’s daily JS that you want to learn, and
not the one from the 90’s. My apologies in advance if some descriptions are
not absolutely perfect. You are the one in charge of any deeper investigation if
needed. So … shall we?

3

debug

It’s the basis, because it’s what we need whenever we write code and we want
to know if such code succeeded or failed. This verification procedure is known
as “debugging”, for the simple reason that it’s usually performed through a
“debugger”, which is a developer’s helper tool that most modern browsers
provide.
Just try to “right click” on any webpage, and see if there is “inspect element” as
the last option of the menu. This is how you can test all examples in this book:
click “inspect element” and then the button or tab called “console”, and start
writing in it pieces of code, also known as “snippets”, while we walk through
the examples.
As an alternative, you could also use the node.js command line interface, since
most examples are environment agnostic, whichmeans these will work in every
browsers as well as servers.
Every code example contains some grayed out comments, I strongly suggest
you read all of them at least once, and focus on the actual programming
afterwards.

comments

In programming, comments are meaningful descriptions of the code itself. They
are ignored during code execution, and can be // single line, ending when a
new line is encountered, or /* multi line */

operators

If you take a calculator, you can see numbers and arithmetic operations on it.
In programming it’s basically the same, there are arithmetic, comparison,
assignment,conditional and other operations. We can use them right away in
any console.

// let's do some math
1 + 2; // shows 3
3 * 5; // shows 15
1 - 2; // shows -1

While in a calculator the sign =means “show the result”, in JavaScript it means
“assign the result”. You can use the = sign to hold some results to be reused
later on.

4

var result = 3 * 7;
result; // shows 21

If you want to compare two different values, you can use the triple equal
operator ===

2 === 2; // true → of course, same number, it's identical to itself
2 === 3; // false → well, 2 is different from 3 so it cannot be the same

To verify that two values are different, you can use the “not” version.

2 !== 2; // false → 2 is 2 so these cannot be different
2 !== 3; // true → of course 2 is different from 3. It's 2!

The ! ”not” operator can be used to negate some logical condition, by inverting
its value. For instance, !true === false and vice-versa.
If you want to state that different values are in fact the same, you can use
logical operators.

(4 + 5) === (5 + 4) && (2 x 3) === (3 x 2); // true → commutative property

There is an entire section about these operations further in the book so let’s
keep focusing on terminology for now.

parenthesis

It is possible to group different sequences of operations via parenthesis. These
become instantly more readable, making the developer’s intent clear.
As an example, if one read an operation such as 2 * 3 + 4 one would think that
the result is 10. Instead, you actually meant to multiply the sum of 3 and 4 by 2,
and to make it clear to both your eyes and the JavaScript program interpreter,
you should write 2 * (3 + 4), which drops all doubts about the result.
Often referenced as parens for short, parenthesis are also used as part of
functions syntax, which is described later on.

brackets

In JavaScript there are curly brackets {}, or braces for short, and square
brackets []. These can be used to create objects and, in the square brackets
case, also to access their values.

5

var obj = {hello: 'world'};// generic reference to an object
var arr = ['a', 'b', 'c']; // generic reference to an Array object
arr[0]; // shows the letter 'a'
obj.hello; // "world"
// ↑ could be accessed via obj['hello'] too

references

A reference is like a symbolic link that points to a specific value. Think of a
selfie, the photo can be considered as a reference to a generic person: you
don’t need to have this person present in the room to see what she looks like
or what she is doing, the photo is enough.

variables

A variable is usually a meaningful name used to reference a generic value. Back
to the example of the selfie, var myPhoto = new Selfie(); creates a reference to
my selfie whose name is myPhoto. I can keep it for me, send it around as a
postcard, receive other selfies from other people, and reassign its value at any
time.

// create a variable that references my selfie
var myAvatar = new Selfie();

// … 5 years later …

// save the old picture
// by using a new variable name
var oldMe = myAvatar;

// then shoot a new selfie
// simply reassigning it to the same variable
myAvatar = new Selfie();

A common JavaScript convention for variable names is var camelCase = any-
Value; starting always with the lower case, and eventually putting together
multiple words through uppercase letters.
If the composite variable name contains single characters or acronyms in it, it
is OK to put together multiple uppercase letters.

6

// common naming conventions examples
var thisIsAGoodNameForAVariable = anyValue;
var result = loadSDK();
object.genericProperty = genericValue;

constants

A constant is like a variable but can only be created, and assigned, once. In
modern JavaScript engines, it can be explicitly created through the keyword
const.

// instead of var MY_CONSTANT = 'staticValue';
const MY_CONSTANT = 'staticValue';

// it does not change its value
MY_CONSTANT = 'nope';

MY_CONSTANT; // shows "staticValue"

Their common naming convention in most popular programming languages is
the following: EVERYTHING_IN_UPPER_CASE_WITH_UNDERSCORE_BETWEEN_WORDS
These kind of variables are frequently, but not exclusively, used to describe
data which do not ever change and have a fixed value (usually well known),
such as the force of gravity or the temperature at which water boils (see the
example below).

if (room.temperature >= WATER_TEMPERATURE_RIGHT_BEFORE_STEAM) {
console.log('too hot');

} else if (room.temperature <= WATER_TEMPERATURE_RIGHT_BEFORE_ICE) {
console.log('too cold');

}

types

When a variable that references a value is created, it can be assumed that this
value has a type. Back to the var myPhoto = new Selfie(); example, you could
say that the type of the variable myPhoto would be “photo”, which describes
more or less what one can do with it: look at it, share it, trash it, draw creepy
things on top of it via some photo editor, etc. In JavaScript the “photo” type
doesn’t exist, but there are few others you can consider.

7

To obtain the type of a generic reference you can write: typeof myReferencedVar

boolean represented by two possible values: true and false.
number represented by integers such as 0, 1, 2, -3 or floats like 0.9, 1.2, -11.7
and a few special cases such as Infinity and NaN *

* NaN means ”Not a Number”, but how could a number be considered not a number? Think about the result of 0/0

string represented by anything within single or double quotes: 'I am a string'
and "so am I" are indeed both valid strings. Most modern JavaScript engines
support also backtick enclosed strings such as `this one` which is also a string
but with some special powers.
undefined represented by the absence of a value. By default, there is a global
reference to such absence named undefined. Its absent value is the exact
equivalent of a variable declaration that does not reference to any value:

var noValYet;
console.log(noValYet === undefined); // shows true

Please bear in mind that JavaScript has a value that explicitly represents
nothing. Such value is actually a reserved, constant-like, keyword named null.
The null value is also the implicit root of every JS object and its type is “object”.

object represented mostly by curly {} or square [] brackets. Objects are
containers for key/value pairs (also described as properties where each key
would be a property name and each value would be a property value). When
it comes to square brackets [], the object can also be called Array and its
property names are commonly represented by integer indexes (indices).

// create two variables, one Object and one Array
var obj = {aKey: 'a value', bKey: 123};// typeof obj === 'object'
var arr = ['some value', 456]; // typeof arr === 'object'

// read an Object property
console.log(obj.aKey); // 'a value'
// read an Array element by its index
console.log(arr[0]); // 'some value'

function represented by function name(a,b) { return; } syntax, or in modern
engines by ()=>{}. Functions are special objects that can be “invoked”.

symbol only in modern JS engines, it can be used as special “object” property.

8

invoke
In JavaScript, this term is related to a specific operation: executing any sort of
function reference using parenthesis:

// declaring a function
function tellMeSomething() {

console.log('something');
}

// tellMeSomething is the reference name
// of the function we have just declared
tellMeSomething; // nothing happens (just shows the function itself)

// to “execute” this function
// we need to invoke it using parenthesis
tellMeSomething(); // logs 'something'

If you look carefully, you can see that even the operation console.log('something');
is invoking a function. However, in such a case the log function is invoked
through a console object reference instead of directly, and it’s accessed using
a “dot notation”.
Every time a function is invoked after a dot, that function can be considered a
“method”.

function declaration VS function expression
There are a few ways to define a function and each might be more or less
convenient.
A function declaration, for example, creates a reference available everywhere
within the “scope” it has been declared, even if invoked before.

// invoke it even before it's declared
readyJack(); // works as expected

function readyJack() {
console.log('I was born ready');

}

This can help you organize code in separate blocks. But it can also be confusing
if there are many declarations in various different parts. Since it’s a good
practice to declare all needed variables together, function expressions might
be a better fit.

9

var name = 'Jack';
// function expression referenced via readyJack variable
var readyJack = function () {

console.log(name + ' was just an expression');
};

Just like every single variable declaration should end with a semicolon, when
assigned to a variable function, expressions should also end with a semicolon.
Semicolons are not needed when it comes to function declarations, as shown
in the previous example.
Remember: function expressions cannot be executed before they are defined.

named function expressions

To simplify our own debugging, it’s a good practice to give functions a name,
even if there is a function expression and a reference to it.

var anonymous = function () {};
var named = function helloThere() {};
console.log(anonymous.name); // empty string
console.log(named.name); // logs 'helloThere'

It must be said that modern debuggers are smart enough to tell the reference
name anyway, but it’s good to know that you can create function expressions
with a name at runtime.
This is particularly handy when you want to immediately invoke the function
itself *
* procedure also known as IIFE: Immediately Invoked Function Expression

(function areWeThereYet(tenSteps) {
if (tenSteps === 0) {
console.log('finally arrived');

} else {
console.log('yet another step');
// use the function name to invoke itself
// passing the decreased count
areWeThereYet(tenSteps – 1);

}
}(10)); // the count in this case starts at 10

10

scope

This term indicates the boundaries in which the code is executed. Think of it
as the Universe is every galaxy’s scope, the Milky Way is our solar system’s
scope, the solar system is planet Earth’s scope, planet Earth is all continents’
scope, and for each continent we are going to have countries, regions, cities,
councils and finally your own house, which is your own scope while you are
inside it, while the rest of the city will be your scope when you get out.
In JavaScript, by default there is a global scope in which you can define
functions and variables. However, back to the house metaphor, you don’t want
each neighbour to know about every single thing you do in your place: your
home is your place, and functions, in JavaScript, are the way to define your very
own place without interfering, or being disturbed, by everything that happens
in the middle of the street, or anywhere else, including other houses.

// global scope starts before JS code is executed (it's already there)
// function `myHouse` scope starts here
function myHouse(sco, ped, args) {

// defining a variable inside `myHouse` makes it available only here
var myMess = 'my own room';

} // function `myHouse` scope ends here

typeof myHouse; // is the 'function' `myHouse`
typeof myMess; // is 'undefined' because it's unknown in this scope

private and nested scope

Since it is possible to create functions inside other functions, it is also possible
to have a private scope within a function that is already private, like a room
within the house.
To create a private scope, we can use the previously seen IIFE approach without
naming our function expression.

// anonymous IIFE
(function () {

var myPrivateScope = 'a string value';
console.log(typeof myPrivateScope); // 'string'

}());
console.log(typeof myPrivateScope); // 'undefined'

11

By having an anonymous function expression that invokes itself, you can be
absolutely sure that nobody outside that function can be able to interfere with
your code. Moreover, you can define other functions in it, and create nested
scopes.

(function (){
var who = 'I am ';
var nestedExpression = function () { // nested function expression scope
var nested = who + 'expression';
return nested;

};
function nestedDeclaration() { // nested function declaration scope
var nested = who + 'declaration';
return nested;

}
console.log(nestedExpression()); // 'I am an expression'
console.log(nestedDeclaration()); // 'I am a declaration'

}());

It is important to remember that nested scopes can always access their outer
scope variables or references but never vice-versa. This is why it is possible,
for both function expression and declaration in the previous example, to use
the who reference while executing. However, it wouldn’t be possible for the
private outer scope to reach the nested variable defined inside each nested
function: these are reachable only via their own function scope. The reason we
want to use private scopes when defining our own variables, and the reason
we create functions at all, is to prevent conflicts with any other variable name
that could possibly be already present in our application. It is also a way to
automatically clean up or free memory once we have completed the task the
function is supposed to solve.

context

Every time a function is invoked, it is possible to reference its current execution
context through the automatically available this reference, which has one of
the following values:

• the global program context, called window in browsers and global on server
• the generic obj object that invoked the function through the dot notation:

obj.method()
• an arbitrary explicit value, including undefined, when invoked via function
methods like .call or .apply

12

global context

If you open your browser console, or start node js, you can inspect the global
context writing console.log(this); or simply this.
Whenever you define a variable or declare a function globally, you are also able
to reference these variables through the global context, since it is just like an
object.

// create a variable directly in the global scope
var globallyDefinedVariable = 'can everyone access me?';
// it's accessible through the global object
console.log(this.globallyDefinedVariable);

// the same when you create a function
function globallyDeclaredFunction() {

return globallyDefinedVariable;
}
console.log(globallyDeclaredFunction());

It is also possible to define global variables inside a generic function by
accident, by simply omitting the var keyword before assigning a value to a
reference.

console.log(typeof a); // 'undefined'
function myScope() {

a = 123; // instead of var a = 123;
}
myScope();
console.log(typeof a); // 'number'
console.log(a); // 123

To prevent accidental global scope and context pollution, the 5th version of
the ECMAScript specification (the standard that defines JavaScript semantics,
syntax and behavior) introduces a special "use strict"; directive.
This string, if placed at the beginning of a function, will guard the global context
and switch into a more strict behavior. If you try the previous code again, you
will see an Error instead of the number 123.

13

console.log(typeof a); // 'undefined'
function myScope() {'use strict'; // switch local scope to strict mode

a = 123;
}
myScope(); // shows an Error
console.log(typeof a); // still 'undefined'

Not only it’s impossible to define variables in the global scope by accident, but
when this directive is used, the execution context will also be undefined, unless
explicitly provided.

// defined in the global scope
function whoIsThis() {'use strict'; return this;}
whoIsThis(); // undefined
this.whoIsThis(); // the global context

method context

In JavaScript objects can have properties of any kind and functions are no
exception.

// create an empty object
var obj = {};
// define a property as function expression
obj.somePropertyName = function () {

return this;
};
// what would be that returned context value?
// let's figure it out by invoking obj.somePropertyName
obj.somePropertyName(); // exactly the obj itself

When a function is invoked through an object, it implicitly uses this object as its
current execution context. It is important to remember that any function can
be attached to any object at any time, even if it is not directly defined as a
property of that object.

14

// generic function defined here or somewhere else
function sayTheName() { console.log(this.name); }
// generic object
var me = {};
// with a name property and 'Andrea' as value
me.name = 'Andrea';

// function sayTheName attached as 'whoAmI' property
me.whoAmI = sayTheName;

// so we can invoke it as method
me.whoAmI(); // 'Andrea'

Even though it is not such a good idea to attach methods at runtime, the fact
that we can borrow functions of any kind and use them as methods in different
objects is nonetheless an amazing feature. “Why would we need that” is more
than a legit question, and the answer is that, for example, each collection of
items does not necessarily have all methods like a regular Array. Online it is
indeed possible to find some code examples similar to the following:

// COUNTEREXAMPLE
var allNodes = document.querySelectorAll('*');
// borrow the forEach method from an empty Array
allNodes.forEach = [].forEach;
// iterate over all nodes using the method
allNodes.forEach(function (node) {

console.log(node.nodeName);
});

As already mentioned, modifying objects one didn’t create is a very dirty
approach, even if it is possible. As an example, if we take someone for a ride
in our shiny new car, we don’t want them to leave food crumbs and dirt all
around. It wasn’t there when they got in, why should it be now!
Good news: there are better and cleaner ways to invoke a function by providing
a context.

invoking a function via call or apply

As described in the types paragraph, functions are special objects that can
be executed. Just like any object, functions can also have properties, hence
methods.

15

The most commonly used methods of any function are .call() and .apply(),
which only differ in that while .call accepts an arbitrary amount of arguments
to pass along, .apply accepts only an Array to be used as invocation arguments.

// three functions that log some information
function fnWithNoArguments() { console.log('nothing to do here'); }
function fnWithOneArgument(first) { console.log('received', first); }
function fnWithTwoArguments(a, b) { console.log('received', a, b); }
// using call and ignoring the first context value for now, using nullW
fnWithNoArguments.call(null);
fnWithOneArgument.call(null, 'some value');
fnWithTwoArguments.call(null, 'first value', 'second value');

// to use `apply`, you need one or more Arrays
var emptyArray = [];
var arrayWithOneArgument = ['any value'];
var arrayWithTwoArguments = ['1st', '2nd'];

// same result as you logged already via .call
fnWithNoArguments.apply(null, emptyArray);
fnWithOneArgument.apply(null, arrayWithOneArgument);
fnWithTwoArguments.apply(null, arrayWithTwoArguments);

Tip to remember the difference between .call and .apply: the word “apply”
starts with “a”, and so does Array ;-)

explicit context

Now that the difference between these two methods is clear, it’s time to
understand what’s powerful about them.
Do you remember the collection in the previous page?

var allNodes = document.querySelectorAll('*');
// a dirty and not always possible approach
// allNodes.forEach = [].forEach;

// this is one way to borrow and invoke the Array forEach method
[].forEach.call(allNodes, function (node) {

console.log(node.nodeName);
});

16

Invoke the following function through its .call method passing, as first
context argument, any sort of value that will be returned as this.

function whoIsIt() {'use strict'; return this;}
whoIsIt.call(null);
whoIsIt.call(123);
whoIsIt.call(['a', 'b', 'c']);

arguments

Every time a function is invoked, it might receive from zero to many arguments,
each of which is also the name of the special object that gets created each time
a function is executed.

function contextAndThreeArguments(a, b, c) {
console.log(this, a, b, c);

}
var me = {name: 'Andrea'};
contextAndThreeArguments.call(me, 1, 2, 3);

Not only the object mewill be the execution context, you’ll also log in the console
three different arguments: 1, 2, and 3.
The fact that you have named your arguments a, b, and c, means that you
expect a maximum of 3 of them and no more. But what if you don’t know
upfront how many arguments you expect?

function contextAndArguments() { // no specific amount of args expected
console.log(this, arguments);

}
var me = {name: 'Andrea'};
contextAndArguments.call(me, 1, 2, 3);
contextAndArguments.call(me, 4);
contextAndArguments.call(me, 5, 6, 7, 8, 9, 10);

The output in the console will be quite different this time. You will see a list
of values enclosed in square brackets such as [1, 2, 3] and [4] or [5, 6, 7,
8, 9, 10], which represent the collection of items the current arguments object
contains for each different function execution. Please note that arguments is not
actually an Array, even if its structure looks similar: you access its properties
using integers and it has a length property.

17

function argumentsVSArray() {
// almost every object has a toString method
// it usually describes what kind of object you are dealing with
console.log(arguments.toString());
// you create a collection of 3 elements
var arr = [

arguments[0], // access arguments value at property '0'
arguments[1], // access arguments value at property '1'
arguments[2] // access arguments value at property '2'

];
// Array has a special toString method that joins all elements instead
console.log(arr.toString());

}

argumentsVSArray('a', 'b', 'c');

As arguments is not an Array, you see the string '[object Arguments]' instead of
['a','b','c'].
In this example you access all indexes manually, but what if there were more
than 3 arguments?

18

Array and generic collections iteration

When talking about iteration we describe the process that accesses every
property, hence every value, of a generic object. If we are dealing with an
Array or a generic list, such process is represented by a loop that accesses
every index between 0, and the length of the collection itself, which is available
through the special property .length

var list = ['a', 'b', 'c'];
var index = 0;
var sizeOfTheGenericList = list.length;

// a while loop executes what's inside its curly brackets
// until a condition is satisfied
// while (condition) { do something and update the condition }
// in this case the condition is:
// "the `index` is less than `sizeOfTheGenericList`"
while (index < sizeOfTheGenericList) {

console.log(list[index]);
// update the index so that we can get out of the while loop
// whenever index is no longer less than `sizeOfTheGenericList`
index = index + 1;

}

The very first time the condition is satisfied, the index variable has the value 0
which is less than the sizeOfTheGenericList, whose value is 3, since there are 3
items in the list.
In the console you see the letter 'a', then you increment the index by 1, and
you check the condition again. At this point index has the value 1, which is still
less than 3. Then you need to log the value at index 1, which this time shows
the letter 'b' and then you need to do the same again for the index 2 and the
letter 'c'. After that, the condition is no longer satisfied so whatever is inside
the loop won’t execute anymore.

for loop

Similarly to the previous while(condition){…} example, the for loop also ex-
ecutes until its condition is no longer satisfied. However, its logical order is
slightly different and described as such:
(please note the following is not valid JavaScript code, just a textual description)

19

for (
[1] one or more variable declarations, comma-separated ;

▴
first semicolon ────┘

[2] condition to satisfy ; ◂───── second semicolon
[4] changes to update the condition

) {
[3] do something with the current value. Please note this is actually

the third part of a for loop flow. The 4th one comes after this one
}

Taking into consideration the previous while loop as an example, you can do
exactly the same process within the following for loop:

for (var index = 0, size = list.length; index < size; index = index + 1) {
console.log(list[index]);

}

It is very important to note that if the condition is not satisfied, neither the 3rd

nor the 4th part of the for loop is executed.

// empty list, its length is 0
var list = [];
for (var

i = 0;
i < list.length; // the condition is never satisfied
i = i + 1 // it won't happen if the condition exited the loop

) {
console.log(i);

}
console.log(i); // 0 because the 4th part (i = i + 1) never happened

As soon as you put at least one item in the list, the condition is satisfied (at
least once) and you’ll see that the value of i after the loop is 1 instead of 0.

incremental ++ operator

It is very common to increment integers using a ++ sign instead of reassigning
the variable to itself adding 1. Accordingly, the following example is how a for
loop usually looks like:

20

for (var i = 0; i < collection.length; i++) {
// do something with collection[i];

}

The ++ operator can be used both before or after a variable. In both cases the
variable is incremented, but its immediately returned value is quite different.

// using ++ as suffix (a.k.a. post-increment)
var num = 0;
var numPlusPlus = num++;
console.log(numPlusPlus); // 0, when assigned num wasn't incremented yet
console.log(num); // 1, because after num++ it got incremented

// using ++ as prefix (a.k.a. pre-increment)
var num = 0;
var plusPlusNum = ++num;
console.log(plusPlusNum); // 1, when assigned, num was already incremented
console.log(num); // 1, ++num incremented num and returned it as 1

There is no specific reason to prefer one way or the other, and while num++
is usually preferred, ++num could also be used as an example to loop over a
collection with at least 2 items:

var i = 0;
while (++i < list.length) { compare(list[i-1], list[i]); }

Decreasing an integer by 1 (decrementing) is also possible using the --
operator, simulating the operation num = num – 1.
Everything already mentioned for the ++ operator, including the differences
when used as prefix or as suffix, equally applies for the -- decremental
operator.

21

Array methods

In JavaScript, every array comes with some special methods, used to change,
copy, update, or iterate its items. Not only methods look somehow cleaner than
loops, but it’s common to borrow them to iterate over any sort of collection,
arguments included.

array.forEach(callback, context)

This is probably the most “as close as possible to a loop” arrays’ method, and
it works like this:

['a', 'b', 'c'].forEach(function (value, index, array) {
// the function will be called array.length times
// which in the ['a', 'b', 'c'] list case means three times
console.log(index, value);
// 0, 'a'
// 1, 'b'
// 2, 'c'

});

The anonymous function is invoked three times, receiving those arguments by
default.
Let’s reconstruct what happens in a forEach using the good old loop syntax.

for (var
list = ['a', 'b', 'c'],
context, // unless specified, the forEach context is undefined
callback = function (value, index, array) {
console.log(index, value);

},
i = 0;
i < list.length;
i++

) {
// log same sequence previously logged via forEach
callback.call(context, list[i], i, list);

}

The context is a feature that is rarely used, but very handy in some cases. As
there are collections that might not have a forEach method, you can borrow its
iteration capability.

22

// the current user on a generic social page
var user = {

name: 'Andrea',
// a method to write the user name in a generic DOM element
writeNameInElement: function (element) {
// expect `this` to be the user object
element.textContent = this.name;

}
};
// find all nodes that should show the user name
var nodes = document.querySelectorAll('.user-name');

// iterate over nodes invoking user.writeNameInElement and
// pass `user` as `forEach` iteration context
[].forEach.call(nodes, user.writeNameInElement, user);

array.map(callback, context) → newArray

If instead you want to create a new array based on some value found during
the iteration, .map() is the right way to go. Its usage is basically the same as
for the forEach one, but its invoked function should return some value for each
iterated index.

var single = [1, 2, 3];
var doubled = single.map(function (num, i, arr) {

return num + num; // returning a new value for index i
});

console.log(single); // [1, 2, 3]
console.log(doubled); // [2, 4, 6]

The main use case for map is to create a new list of items after somehow
extracting, changing, or transforming the initial values of a collection.

var people = [{name: 'Andrea'}, {name: 'Robert'}];
var allNames = people.map(function (obj) { return obj.name; });
console.log(allNames); // 'Andrea', 'Robert'

23

array.filter(callback, context) → newArray

In case you want to work only with items that satisfy a specific condition, you
can use the filter method which creates a new array containing only those
items that pass the check.

var smallerThan10 = [1, 5, 8, 12, 16].filter(function (num) {
return num < 10;

});
console.log(smallerThan10); // [1, 5, 8]

One should never confuse the meaning of the returned value in .map() with
the one returned in .filter(), because while the former will use as value for
that index whatever value you decide to return, including undefined in case no
value is specified, .filter() returned value will be just the condition indicating
if the value at the current index should be kept or not in the new array.

array.some(callback, context) → boolean

You now know how to iterate, how to transform and how to filter; but how do
you look for a specific condition inside a collection?
Well, in this case .some() is your best friend as it stops iterating as soon as the
returned value satisfies the condition.

var people = [{name: 'Andrea'}, {name: 'Robert'}];

function isThereAny(name) {
return people.some(function (user) {
// as soon as this is true it will stop iterating
return user.name === name;

});
}

console.log(isThereAny('Andrea')); // true
console.log(isThereAny('Jack')); // false

24

array.every(callback, context) → boolean

To the contrary of .some(), the following method stops iterating as soon as the
condition is not satisfied:

var people = [{name: 'Andrea', age: 37}, {name: 'Robert', age: 17}];

function canEveryoneDrink() {
return people.every(function (person) {
return person.age >= 18;

});
}

console.log(canEveryoneDrink()); // false, Robert is too young

array.indexOf(value, fromIndex) → number

As its name suggests, .indexOf finds the index, if any, that holds a specific value
within an array.

var alphabet = ['a', 'b', 'c', 'd', '...', 'z'];
var index = alphabet.indexOf('c'); // index === 2
alphabet[index]; // 'c'

// if not found, returns -1
alphabet.indexOf(123); // -1

In the latest specifications, array.includes(value, fromIndex) returns a boolean
indicating the value is present or not.

There are actually dozens of array methods. All of them are described with
many examples and uses in the Mozilla Developer Network, under the section
Array.prototype1, which is the object containing all methods and behaviors
inherited by every array.

1
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype

25

prototype and prototypal inheritance

When a new variable has the value of an object, an array, or a function, it comes
by default with methods that nobody explicitly assigned: these are already
part of the core functionality; they are properties, and methods, inherited from
another object.
There are two mechanisms to inherit from other objects: via direct link or via
special functions used to initialize objects and setup their inheritance.
The first direct link way to explicitly inherit properties between objects, is the
following:

// generic object referenced as a `person`
// it has two properties: `name` and `age`
// and a method in charge of increasing the age
var person = {

name: 'anonymous',
age: 0,
birthday: function () {
this.age++;

}
};

// this is just me, inheriting
// properties and methods
// from the `person` object
// using a method of the globally always available
// `Object` “constructor” (described later on)
var me = Object.create(person);
me.name = 'Andrea';
console.log(me); // {name: 'Andrea'}
console.log(person); // {name: 'anonymous', age: 0}

Usually the browser console will only show objects “own” properties, ignoring
the inherited ones.
That is why logging the variable me, you see only the name property, even if
there’s more in there.

26

genericA.isPrototypeOf(genericB) → boolean

In JavaScript, one of the methods available by default is .isPrototypeOf(), which
reveals possible inheritance information between two objects.
If you consider the previous variables person and me as an example, you can
assume the result of the person.isPrototypeOf(me) invocation will be true.
But what does it mean, exactly?

// how does the console show me?
console.log(me); // {name: 'Andrea'}

// but does me have an `age` too?
me.age; // 0 → Yes, `age` is inherited from `person`

// and does me have a `birthday` method too?
typeof me.birthday; // 'function' → Yes, inherited from `person`

// what happens if we invoke the `birthday` as method of `me`?
me.birthday();

// how did `birthday` invocation affect me?
console.log(me); // {name: "Andrea", age: 1}

// and suddenly, ▲ “the wild age appears”
// did me birthday affect person one?
console.log(person); // {name: "anonymous", age: 0} → Nope, all good

A little recap of themethod context chapter: when we invoke a function through
the dot notation from a generic object, that object will temporarily become the
execution context of such function.
This does not mean that both person and me have a birthday method, but it
means that me will temporarily execute person.birthday as if it was its own
method.

27

// `root` is an object with a method that
// simply returns the current execution context
var root = {method: function () {

return this;
}};

// `child` is an object that inherits from `root`
var child = Object.create(root);

// if you execute `root.method` via `root` it will return `root` itself
// since it's the implicit execution context
console.log(root.method() === root); // true → because `this` is `root` here

// but when you invoke the inherited method through the `child` reference
// it returns the current execution context which is `child`, not `root`
console.log(child.method() === child);// true → since `this` is now `child`

// and that is because we are implicitly doing the following:
root.method.call(child); // which will use `child` as `this` indeed

Once you understand that a method does not need to be directly attached or
assigned as an object property, and that it can be simply inherited, what the
prototypal inheritance is about becomes clearer: it is an implicit, “invisible”,
chain between different objects.

Object.prototype

By default, every JavaScript object inherits properties from the Object.prototype,
which is also simply an object, in fact the one that provides basic methods to
all the others.

// create an empty object
var justEmpty = {};

// can this object be represented as a string?
console.log(justEmpty.toString()); // '[object Object]'

// but who put that `toString` method into your empty object?
console.log(justEmpty.toString === Object.prototype.toString); // true

// is that because there is a prototypal chain between these two objects?
console.log(Object.prototype.isPrototypeOf(justEmpty)); // true

28

Since every object has in its root a .toString() method, you might think it will
behave in the same way, regardless of which variable you use, right?
Well, no. Inheriting some property or method doesn’t prevent possible “over-
rides”, therefore a method could have been redefined in the middle of some
inheritance chain.
For instance Array.prototype also inherits from Object.prototype, and you could
always perform an array.isPrototypeOf(anotherObject) check. But the toString
method is not the inherited one. It’s redefined to return its comma-separated
values that are also “converted” into a string.

// create a generic Array containing 3 numbers
var arr = [7, 11, 2];

// the arr.toString method is inherited by Array.prototype
// and not by Object.prototype. The following check is indeed false
console.log(arr.toString === Object.prototype.toString); // false

// but other methods are inherited from the root
console.log(arr.isPrototypeOf === Object.prototype.isPrototypeOf); // true

// how different is it?
console.log(arr.toString()); // it's the string '[7,11,2]'

object.toString() → string

Being at the root of the prototypal chain has some advantages. For instance,
even if array inherits a different toString method, you can temporarily borrow
the method at the root and see how different the result is.

var arr = ['a', 'b', 'c', 'd'];
console.log(

// the inherited method is the one from Array.prototype,
Array.prototype.toString.call(arr), // 'a,b,c,d'
// which is indeed the equivalent of the following operation
arr.toString(), // 'a,b,c,d'
// but Array.prototype inherits from Object.prototype
// and what happens when you use the original method instead?
Object.prototype.toString.call(arr) // '[object Array]'

);

The Object.prototype.toString method is a very special one: it can tell you if
you are dealing with some generic object or a “native” one.

29

As in the previous example, using an array as Object.prototype.toString execu-
tion context will return the string '[object Array]', very differently compared
to '[object Object]' which is the default string returned for every object in our
program.

native

In JavaScript, this termmeans all variables, objects, functions, methods, classes
or constructors that have been provided by the environment and not by a
library. Objects derived from native classes in JavaScript expose their “class”
name once they are used as context of the Object.prototype.toString method.

// being lazy and for demo purposes
// let's reference the method directly
var toString = Object.prototype.toString;

// so that it is possible to easily invoke it multiple times
console.log(

toString.call({}), // '[object Object]'
toString.call([]), // '[object Array]'
toString.call(''), // '[object String]'
toString.call(0), // '[object Number]'
toString.call(true), // '[object Boolean]'
toString.call(null), // '[object Null]'
toString.call(undefined), // '[object Undefined]'
toString.call(function () {}), // '[object Function]'
toString.call(JSON), // '[object JSON]'
toString.call(Math), // '[object Math]'
toString.call(new Date), // '[object Date]'
toString.call(this.window || global) // '[object global]'

);

Historically, unlike many other cases, the Object.prototype.toString method
has been implemented in a consistent and reliable way across platforms.

30

class

In most modern JavaScript implementations, class is a very specific keyword
used to define the behavior of each object that will be created through its name.
Following there is an example of modern JS syntax *
* which might not work in older browsers or JS engines

// define a generic Rectangle behavior
class Rectangle {

// this method will implicitly be invoked every time
// a new Rectangle(w, h) is created
constructor(width, height) {
// the `this` invocation context will be
// the freshly created new object
// you assign the received arguments to use them later on
this.width = width;
this.height = height;

} // ← note that a class definition doesn't need a comma between methods

// the definition includes an `.area()` method
// that will be inherited by each `new Rectangle`
area() {
// the execution context will be the `Rectangle` instance
// that is invoking the area method. Every instance
// will have `width` and `height` properties, assigned when created
return this.width * this.height;

}
} // note: no comma required here either

// a `Rectangle` instance example
var myDesk = new Rectangle(5, 3);
console.log(myDesk.area()); // 15 as 5 * 3
// another reference
var myTV = new Rectangle(16, 9);
console.log(myTV.area()); // 144

Whenever in JavaScript the special keyword new is used, the engine expects a
class or a “constructor” right after new in order to create an object linked to the
constructor’s own prototype.

31

constructor

Whenever you declare a function, the engine will automatically provide its
prototype object.

function justAFunction() { /* and it could do anything it wants */ }

console.log(
// who put this object here?
justAFunction.prototype, // {}
// is that inherited from the global Function?
justAFunction.prototype === Function.prototype // false

);

Generally speaking, every JavaScript function can be used to create objects
linked to their own prototype, which is an object that contains only one
property: the constructor

function linkMe() {} // simple function

// linkMe becomes special the moment we invoke it via new
var obj = new linkMe();

console.log(
// we have created a prototypal chain
linkMe.prototype.isPrototypeOf(obj), // true
// by default we also have inherited the constructor
// which is nothing else but the function linkMe
obj.constructor === linkMe, // true
// and such constructor is actually inherited
// since it is indeed part of linkMe.prototype itself
linkMe.prototype.constructor === linkMe // true

);

Going back to the Object.create(fromAnotherObject) mechanism you saw pre-
viously, you can use functions to create new instances, as in the following
operation:

32

function Shape() {} // dummy function used only to inherit its prototype

// creating a chain using the Shape.prototype
var oneShape = Object.create(Shape.prototype);

// is the same as creating a new Shape
var anotherShape = new Shape();

console.log(
Shape.prototype.isPrototypeOf(oneShape), // true
Shape.prototype.isPrototypeOf(anotherShape) // true

);

The biggest difference between these two approaches, is that using new Shape()
inevitably invokes the Shape function, implicitly using the fresh newly created
instance as an execution context.
That in turn will, for example, give us the ability to do some setup in there.

// as a naming convention, classes are PascalCase (capital first letter)
function Person(name) {

this.name = name;
}

var me = new Person('Andrea'); // the class way

// the equivalent and explicit way
var me = Object.create(Person.prototype); // the procedural way
// invoke the Person to setup me.name
// otherwise there won't be any name property at all
Person.call(me, 'Andrea');

In either case, the generic object created either via Person, or from its prototype,
inherits a constructor property which is Person itself, like it was for the generic
function.
To summarise: when we talk about a constructor in JavaScript, we refer to the
special method that will implicitly initialize any instance as soon as it gets
created via the new keyword.

instance

Whenever an object is created using new Constructor, it can be called an
instance of that Constructor.

33

This helps us name expected behaviors as defined by classes, instead of
referencing objects as linked to the prototype inherited via such constructor.

• Q : “What is myDesk?”
• A1: “it’s a Rectangle instance”
• A2: “it’s an object that inherits from Rectangle.prototype”

As you surely agree, it’s more convenient to discuss references by using the
term instance, and JS has a similar special keyword for that:

function Person(name) { this.name = name; }

var rob = new Person('Robert');

console.log(
Person.prototype.isPrototypeOf(rob), // true
rob instanceof Person // true → as equivalent check

);

inheritance
We have already mentioned the prototypal inheritance, but we haven’t seen
how it works in practice. Here is a basic textual example of the logic behind an
object property access.

Object.prototype ┌─ as a generic property name
▲ └─▶Class.prototype ▼
│ ▲ └─▶instance[property]─┐
│ │ ▲ │
│ │ │ ┌──────────┘
│ │ │ │ is `property` found in `instance`?
│ │ └────┘ yes, return instance[property] ─▶
│ │ no, check its inherited object ┐
│ │ │
│ │ ┌───┘
│ │ │ is `property` found in the `Class.prototype`?
│ └─────┘ yes, return `Class.prototype[property]` ─▶
│ no, check its inherited object ┐
│ │
│ ┌──┘
│ │ is `property` found in the `Object.prototype`?
└─────┘ yes, return `Object.prototype[property]` ─▶

no, return `undefined` ─▶

34

the in operator

If you want to know whether a generic property name is reachable through an
object, you can use the in operator which inspects any inheritance chain.

var obj = {key: 'value'};

console.log(
// is property 'key' reachable through `obj`?
'key' in obj, // true
// is also 'toString' reachable through `obj`?
'toString' in obj // true → via `Object.prototype`

);

It is also very important to remember that knowing that an object can access a
specific property through its prototypal chain, does not mean that this property
contains any value.
As an example, even undefined can be considered a property of the global
execution context.

var root = this.window || global;
console.log(

// does the global context contain an undefined reference?
'undefined' in root, // true
// does it mean such property has a value?
root.undefined // undefined → so, nope!

);

This is why it is common to see code online that checks both for property
existence and a returned value, assuming that, if defined, it gives access to
the expected value or method.

// one way to check the existence of properties via their “truthy” value
if (obj.hasSomeMethod) {

obj.hasSomeMethod(some, value);
}

for/in loop

Having seen how to loop over arrays indexes, now we surely want to know how
to loop over object properties. The for/in loop is the traditional way to do it,
and here is how:

35

// yet another `me`
var me = {

twitter: '@WebReflection',
name: 'Andrea',
age: 0

};

// loop all key/value pairs and log them
for (var key in obj) {

console.log(key, obj[key]);
}
// twitter @WebReflection, name Andrea, age 0

enumerable

After all the considerations made about the inheritance and the fact that the in
operator can easily inspect it, it might come as a surprise that the for/in loop
does not show all properties and methods inherited from the Object.prototype.

var empty = {};
for(var k in empty) {

console.log('why this never happens?'); // does not appear in the console
}
console.log('toString' in empty); // but this logs `true`

First of all, the in used to loop via for/in has a different meaning compared to
prop in obj. Also, properties can be or not be enumerable. As a consequence,
theymight expose themselves in a for/in loop, or be simply skipped or ignored.
For example, every native JavaScript constructor such as Object, Array, String,
or any other, has properties defined in their prototype as non-enumerable.

object.propertyIsEnumerable(name) → boolean

The Object.prototype provides a few handymethods and propertyIsEnumerable is
one of them. It returns true if the property has been assigned, or configured as
enumerable, otherwise it returns false. As alreadymentioned, native properties
aren’t enumerable.

36

var obj = {prop: 123};
console.log(

obj.propertyIsEnumerable('prop'), // true
obj.propertyIsEnumerable('toString'), // false
Object.prototype.propertyIsEnumerable('toString') // false

);

If you loop over obj with a for/in loop, you’ll see that 'prop' is revealed in there,
but nothing else is.

object.hasOwnProperty(name) → boolean

How is it possible to tell whether a property (or method) has been inherited or
not? The answer is in the method hasOwnProperty, which returns true only if the
property is an own one, directly attached, not inherited.

var obj = {prop: 123};
console.log(

obj.hasOwnproperty('prop'), // true → we defined it
obj.hasOwnproperty('toString'), // false → is inherited
Object.prototype.hasOwnproperty('toString') // true → it's its own one

);

In case you are wondering why you need to know about all those methods, the
answer is because prototypal inheritance can be both powerful and dangerous
at the same time.
For instance, setting a property like obj.toString.prop = 'value';will not simply
affect the method toString of that obj reference, instead it will affect the uni-
versally inherited toString method, because that’s what you access whenever
you invoke a generic.toString() that hasn’t been redefined.

shared properties

When talking about classes and prototypes in particular, but also when there is
a private scope and some private reference, the term “shared” describes the
fact that a method, an object, or a function, is used in many different places,
for similar purposes, and via many objects.

37

function SharedData() {}
SharedData.prototype.data = {}; // will be inherited

var one = new SharedData; // just two different instances
var two = new SharedData; // that inherit from SharedData.prototype

// Note: parenthesis are optional
one.data.test = 'one check, one check';

console.log(
// did previous operation affected `two.data`?
two.data.test, // 'one check, one check'
// is that because `one` and `two` are sharing the same data?
one.data === two.data // true → it's exactly the same reference

);

The above example is one of the reasons modern JavaScript class syntax
doesn’t allow the definition of properties to be different from that of methods,
with the only exception of “getters” and “setters”, which are special kind of
methods with “implicit invoke” capability.
Back to the shared data issue, whenever we want to setup some data property
per each instance, the constructor is surely the best place to do it.

function NotSharedData() {
this.data = {}; // ← the right place to create instances properties

}

var one = new NotSharedData;
var two = new NotSharedData;

one.data.test = 'one check, one check';

console.log(
// did previous operation affect `two.data`?
two.data.test, // undefined
// is that because `one` and `two` are sharing the same data?
one.data === two.data // false → each instance has a different data

);

For comparison sake, in a modern environment the above class would look as
follows:

38

class NotSharedData {
constructor() {
this.data = {};

}
}

getters and setters

If someone asks “what time is it?” we would have to check our watch, our
phone, or “our meridian” before answering, because we don’t keep constant
track of time.
Metaphorically speaking, a similar situation happens every time we access the
.length property of an array: it will count howmany items it has at that moment
and will return the count as integer. Also, in the same way as we can set the
time on our watch, we can also set the .length of our array. But what happens
in that case?

var arr = ['a', 'b', 'c'];
console.log(arr); // 'a,b,c'

// it counts its own items and returns 3
console.log(arr.length);
// what if we set the length?
arr.length = 2;

console.log(arr); // 'a,b' → we lost the value 'c' at index 3
console.log(arr.length); // 2 → and we definitively lost 'c'

arr.length = 5; // so even if we set the length again
console.log(arr); // 'a,b' or 'a,b,<3 empty slot>'
console.log(arr.length); // 5 → and indexes 2,3,4 are undefined

Getting or setting the length seems like a transparent operation. However, the
truth is that behind the scenes there is definitively something else going on!
If you are familiar with web pages, you might know that there are properties
like el.textContent or el.innerHTML (where el is any DOM element) that once
modified could visibly affect the entire content of the page.
All these apparently “magic” properties and behaviors are possible thanks to
getters and setters. They are not different from a generic method, but you don’t
need to explicitly invoke them.

39

var me = { // hi, it's me again ^_^;
name: 'Andrea',
realAge: 37,
birthday: function () { // I can grow up too
this.realAge++;
console.log('Happy birthday ' + this.name);

},
// getters and setters have a special syntax
get age() { return this.realAge; }, // if you ask my age I'll tell you
set age(newAge) { // but if you try to set it…
console.warn('I am afraid I cannot change my age to ' + newAge);

}
};

console.log(me.age); // 37
me.age = 40; // I am afraid I cannot change my age to 40
me.birthday(); // Happy birthday Andrea
console.log(me.age); // 38

When it comes to modern classes, the syntax is very similar to the one just
seen above.

class Person {
constructor(name, age) {
this.name = name;
this.realAge = age;

}
birthday() {
this.realAge++;
console.log('Happy birthday ' + this.name);

}
get age() { return this.realAge; }
set age(newAge) {
console.warn('I am afraid I cannot change my age to ' + newAge);

}
}

var me = new Person('Andrea', 37);
console.log(me.age); // 37

However, when using function prototypes, you need to use another utility
whose aim is to define properties via an object, also known as a descriptor.

40

descriptors

In JavaScript, every property of any object could be described through the
following characteristics:

• enumerable, that is the property is easily discoverable via for/in and
other cases

• configurable, that is the property can be deleted or configured again

Accordingly, if you want to define the property as accessor, via getters and
setters, or directly as value, handy for data or methods, you can also have the
following characteristics:

• writable, indicating whether such property can be modified or not
• value, indicating the actual value to assign as property

Whenever you need to access the property via get and set, instead of the
previous two characteristics you can use the following:

• get, which is the method implicitly invoked when a property is accessed
• set, which is the method implicitly invoked when a property is assigned

These two kind of descriptors are called data descriptor or accessor descriptor.

Data Descriptor Accessor Descriptor
default default

enumerable false enumerable false
configurable false configurable false
writable false get function () {}
value undefined set function (value) {}

It’s important to remember that those two kind of descriptors and their different
properties are not interchangeable. When we define get or setwe cannot define
the writable property, neither the value. The getter function will return the
expected value while the setter could update it or even “throw” an Error,
whenever convenient, to explicitly make it non writable.

Object.defineProperty(obj, name, descriptor) → obj
Now that you know pretty much everything about descriptors, it’s time to
understand how they can be used.

41

Here is an example of the “public” method Object.defineProperty:

var square = {size: 8};

Object.defineProperty(square, 'area', {
configurable: true, // you can delete it later on
get: function () {
return this.size * this.size; // it's calculated each time

},
set: function () { // it will not be allowed
throw new Error(

'One does not simply change a square area'
);

}
});

// read the area, it invokes the descriptor `get` as method
console.log(square.area); // 64
// change square size
square.size = 4;
// read it again
console.log(square.area); // 16
// try to set the area directly
square.area = 32; // red alerts in console!

And how can we create a square that cannot ever change its size value?

var fixedSquare = Object.defineProperty({}, 'size', {
enumerable: true, // explicitly enumerable to simulate {size: 8}
writable: false, // explicitly non writable (false by default)
value: 8 // initial, non writable, size value

});

console.log(fixedSquare.size); // 8

// even if we try to change its value
fixedSquare.size = 16;
console.log(fixedSquare.size); // 8

When it comes to properties that shouldn’t be writable or configurable, a setter
can surely provide a better mechanism to inform the program that something
is wrong. Using a data descriptor will indeed fail, but expecting a new property
to change its value while it doesn’t might lead to unexpected logical results.

42

try catch finally

Whenever a program is executed, there are many kinds of errors that could
happen. Some errors might be expected, some errors might be fatal. Most
known fatal errors in Computers history are the “guru meditation” and the
“blue screen of death” as they appeared in good old Commodore Amiga or
Windows Operating Systems.
We definitely don’t need to try and replicate a fatal error, especially because
we actually hope that it will never occur. What we can do though, is to try and
prevent those errors that will interrupt our application and exit without having
any idea of what happened.
The try/catch/finally statement gives us a way to deal with errors we might
expect to happen, a way to also generate Errors, expecting somebody else to
react accordingly.

// checking if a possibly non existant reference can be invoked
try {

iAintEvenDefined();
} catch(errorObject) {

console.warn(errorObject.message);
}
// note that finally is optional

// creating a property that throws an error
var me = Object.defineProperty({}, 'name', {

enumerable: true,
get: function () { return 'Andrea'; },
set: function () {
throw new Error('I already have a name');

} // throw is the keyword used to inform the program about an Error
});

console.log(me.name); // Andrea
try { me.name = 'Robert'; }
catch (whatHappened) { console.warn(whatHappened); }
finally {

console.log('Hello ' + me.name); // 'Hello Andrea'
}

The excessive use of these mechanisms is rarely a good idea. Having too
many try/catch statements around, doesn’t necessarily mean the code is more

43

secure or immune to errors. On the contrary it might indicate we have no
control, or even worst no idea at all, of how many things could possibly go
wrong. There are better approaches to control our application, and on top of
that, try/catch statements might also slow down the execution of the code
considerably. As a summary: use this feature carefully, only when necessary,
and applying common sense.

Error objects have a .message property which is a string containing the
info passed when the new Error("info") object was created.

which descriptor for what

Having various ways to define a property can be both handy and disorienting.
There are so many glitches to talk about when it come to descriptors, but it’s
best to stick to common conventions available in the JavaScript core.
For instance, every generic object property assignment will be a writable,
configurable, and enumerable descriptor, whose value would be exactly the
one provided.

common property descriptor
var me = {name: 'Andrea'};
me.age = 37;

Both name and age properties, will have similar descriptors. Below you can see
the name descriptor:

// representation of the me['name'] property descriptor
({

configurable: true,
enumerable: true,
writable: true,
value: 'Andrea'

})

Whenever you want to set a generic property like name or age, it really
makes little sense to use the tedious Object.defineProperty approach. Specially
because all defaults configuration are false, not true, and there’s no need to
type that much!

44

common class and native method descriptor

While data properties, such as a name or an age, are usually those iterated,
collected, or manipulated, it is rarely convenient to have methods in our way.
Especially when instances are used, where all methods are inherited, you don’t
really want them to show up in your for/in loop. It’s not necessary to know that
every object will have a toString.
Accordingly, all native methods available in JavaScript can be described as
follows:

// representation of the native Object.prototype['toString'] descriptor
({

configurable: true,
enumerable: false, // ← to never show up in for/in loops
writable: true,
value: function toString() { [native code] }

})

It is actually lucky that native descriptors are configurable and writable, as it
means that they can be reassigned and fixed, whenever necessary.

common defensive method descriptor

If we are creating a class for our own purposes, we probably want to ensure
that its methods cannot possibly be modified elsewhere, during the application
execution.
In these cases we might want to set methods directly in the prototype as
follows:

// define a property method directly in the class or function prototype
Object.defineProperty(Constructor.prototype, 'method', {

// defaults → enumerable: false, configurable: false, writable: false
// it won't be possible to patch or change this method later on
value: function () { /*…*/ }

});

common lazy property descriptor

When we talk about lazy properties, we refer to those properties that will have
an expected value only after the first time we need them.

45

Imagine we are going to buy a car. By default it comes with many features
(properties), but we can ask for even more properties. On paper, the car has
a USB port to connect our devices, but it will be configured like that only if we
ask for it, not by default.

class CarOrder {
constructor(chosenColor) {
// color is an own property set during car creation time
this.color = chosenColor;

}
// usbConnector as lazy property
get usbConnector() {
// it is configured on demand the first time
Object.defineProperty(

this,
'usbConnector',
{
configurable: true,
value: {usb: 'connected'}

}
);
// returning the new usbConnector
// will not pass through the class getter
// because now it is an own property
return this.usbConnector;

}
}

The reason we need to use Object.defineProperty to configure a lazy descriptor
is that if we try to set this.usbConnector = {} directly, we’ll inevitably end up
invoking the inherited setter already defined in the CarOrder class prototype.
Moreover, if we want to be able to change the port in the future, we should
grant the possibility to remove this connector or replace it, which is why we’ve
set it as configurable.

Object.getOwnPropertyDescriptor(obj, name) → desc

The last important information about descriptors is that not only you can set
them, but you can always retrieve them too. Let’s try to play around with this
method, exploring, or validating everything we’ve learned so far. Have a closer
look at the Object.prototype:

46

// some inspection of the most indirectly accessed JavaScript class
console.log(

Object.getOwnPropertyDescriptor(Object, 'prototype'),
Object.getOwnPropertyDescriptor(Object.prototype, 'toString'),
Object.getOwnPropertyDescriptor({name: 'Robert'}, 'name'),
Object.getOwnPropertyDescriptor(this.window || global, 'Object')

);

to better understand descriptors, run above code in console

Object.defineProperties(obj, descriptors) → obj

The plural version of Object.defineProperty somehow simplifies the multiple
descriptors assignment, as it requires less typing (which is always a plus! ;-))

var me = {};
Object.defineProperties(me, {

name: {enumerable: true, value: 'Andrea'},
age: {enumerable: true, value: 37}

});

delete

When there is a configurable property, not only we can use the defineProperty
again to change its descriptor, but we can also use delete to erase such property
from the object.

// do you remember? by default all properties are defined as configurable
var me = {name: 'Andrea'};
delete me.name; // true
'name' in me; // false
console.log(me.name); // undefined

The returned boolean value indicates either that there was nothing to do, so
the property can eventually be reassigned to that object without problems, or
that such property was there but it was removed. Remember: delete returns
false only when an own property is non configurable and cannot be deleted.

47

Object.getOwnPropertyNames(obj) → arrayOfAllNames

We have already mentioned object.hasOwnProperty(propName), but how do we
actually get all own properties defined directly in a generic object?

// maybe I don't want to tell my age to everyone
var me = { name: 'Andrea' };
Object.defineProperties(

me,
{ age: { writable: true, value: 37 } }

);

for (var k in me) console.log(k, me[k]);
// the above logs the `name` "Andrea" ... but what about the age?

console.log(Object.getOwnPropertyNames(me)); // ['name', 'age']

Once there is a way to retrieve all named properties of an object and their
descriptors, we have everything we need to analyze any kind of objects.

Object.keys(obj) → arrayOfOwnEnumerableNames

This “public” method is similar to Object.getOwnPropertyNames but it returns an
array of the object’s own enumerable-only properties.

public and public static

We have been using methods such as Object.keys among others which are
exposed through the globally available Object class. There also are other
methods, in most of the native classes.
Array.isArray(obj), String.fromCodePoint(0x1F4A9), or Number.isNaN(0/0), just to
name a few.
These are methods related to the constructors they are attached to.
It is possible to define similar “static” methods ourselves, in the good old way.

48

function Rectangle(w, h) {
this.width = w;
this.height = h;

}

// Remember: functions are just like objects
Rectangle.isSquare = function (instance) {

return instance.width === instance.height;
};

// let's test two different rectangles
var spongeBob = new Rectangle(2, 3);
spongeBob.pants = new Rectangle(2, 2);

// invoke the Rectangle.isSquare
console.log(Rectangle.isSquare(spongeBob)); // false
console.log(Rectangle.isSquare(spongeBob.pants)); // true

In most updated JavaScript engines, you actually have a special static property
for that.

class Rectangle {
static isSquare(instance) {
return instance.width === instance.height;

}
constructor(w, h) {
this.width = w;
this.height = h;

}
}

The Rectangle.isSquare method has the following characteristics:

• it’s not inherited, but it’s publicly available via the Rectangle constructor
• it’s static, that is it is not expected to be used, or being invoked, with an
execution context at all. We can even write Rectangle.isSquare.call(null,
spongeBob) and it still returns true if that instance is a square. No this
context involved whatsoever!

The latter conditions are the same for every public static function.
For instance, Object.keys doesn’t need the Object context in order to be
executed, and it’s also not inherited.

49

var keys = Object.keys; // public static Object.key function shortcut
keys({a, 'a'}); // so that we can directly use it later on

extends
The inheritance journey started by talking about objects inheriting from other
objects. It ends up now by talking about classes extending other classes.
There is no reason to freak out, it’s just the shorter answer to the following
question:

• Q : “What is Square?”
• A1: “it’s a class that extends Rectangle”
• A2: “it’s a class whose prototype inherits directly fromRectangle.prototype”

There is no concrete limit to the amount of prototypes an object can inherit
from, but there is only one direct “extend”, which in JavaScript is only possible
between two classes.
Accordingly, when we use the term “extend”we can only refer to a very specific
relationship.

// a Rectangle constructor
function Rectangle(w, h) {

this.width = w;
this.height = h;

}
// ... with an area getter
Object.defineProperty(Rectangle.prototype, 'area', {

get: function () {
return this.width * this.height;

}
});

// a Square constructor
function Square(size) {

// invoke the “super” (parent) constructor
// which will setup our current instance context
Rectangle.call(this, size, size);

}

// here Square extends Rectangle through its prototype
Square.prototype = Object.create(Rectangle.prototype);
var twoXtwo = new Square(2);
console.log(twoXtwo.area); // 4 → 'cause 2 * 2 === 4 ^_^;

50

super

Whenever the word super, or sometimes parent, appears in Object Oriented
Programming, it refers to the closest anchestor class from which the current
execution context inherited from.
It is a special keyword that should never be used outside a generic class
method. It used to be a reserved word, something that could break a JS
application when encountered.
In pre-ECMAScript2015 era, before the class keyword got promoted from the
status of reserved word to the status of one in use, only some libraries were
using this keyword as a property to shortcut the access to anything provided
from the inherited prototype.
These days thought, it’s quite common to see its usage in the wild.

// the class Rectangle in ES6 → a.k.a. ES2015
class Rectangle {

constructor(w, h) {
this.width = w;
this.height = h;

}
get area() {
return this.width * this.height;

}
}

// how we use the `extends` keyword now
class Square extends Rectangle {

constructor(size) {
super(size, size);

}
}

var twoXtwo = new Square(2);
console.log(twoXtwo.area); // 4

Please bear in mind that if you need to call a super method that is not the
constructor, you need to access it through the dot notation, for example:
super.calculateArea().
In both cases, the super method execution context is automatically recognized,
so you don’t need to use .call() or .apply(), the new syntax takes care of that.

51

implements

As I amwriting, this term is not actually part of current JavaScript specifications.
It usually indicates that a class, or a generic object, is implementing some
interface.

interfaces

An interface is usually a behavior described through methods or properties.
Interfaces can be used to simply describe expectations: they don’t need to
implement any logic at all. As an example, the following is a partial Human class
described through the amount of interfaces it implements.
(please note the following text in not JavaScript but an example of how two interfaces might look like)

interface Walking
method moveLegs(whichSpeed)

interface Breathing
method inhale()
method breatheOut(afterHowLong)

class Human implements Walking, Breathing

Remember: the term “partial” is also commonly used to describe some appli-
cation, class, or object, that is not yet fully composed into its final “shape”.

52

trait and mixin

These two terms indicate a similar concept: an object, or function, which is
capable of enriching another object, class, or function, bringing its own specific
behavior.

// basic mixin utility
function mixin(source, target) {

// per each property name in the target object
Object.getOwnPropertyNames(target).forEach(function (key) {
// enrich the source using the same target[key] descriptor
Object.defineProperty(

source, key, Object.getOwnPropertyDescriptor(target, key)
);

});
return source;

}

// simple trait we can use to enrich any object
// it has the whole logic in it, it could work by its own
var circle = {

r: 0, // initial radius value
get circumference() { // calculate the circumference
return this.r * 2 * Math.PI;

},
get area() { // calculate the area
return Math.pow(this.r, 2) * Math.PI;

}
};

// generic shape, any object would do
var shape = {};

// we just need to enrich the object with one or more mixins
mixin(shape, circle);

// now if we have a radius of 12
shape.r = 12;
console.log(// we'll see

shape.circumference, // 75.39822368615503
shape.area // 452.3893421169302

);

53

Composing objects, or prototypes, via mixins, doesn’t necessarily need to be
an alternative to classes, it’s actually the opposite.
Enriching prototypes via traits can make our code better organized and
extremely portable.
It doesn’t matter which class and what’s inheriting, you can make it capable of
multiple other behaviors as you need.
There probably aremany other details youmight want to learn regardingObject
Oriented Programming and JavaScript, but among these pages the majority of
words used to describe code snippets, applications, or anything else in regards
to objects of any kind, have been covered at least roughly.

if else switch and conditional logic

It might feel weird to start reading about basic boolean logic after a comprehen-
sive introduction to a more complex subject as Object Oriented Programming
is, but the reason behind it is that at least now you should be able to understand
even more complex examples.

conditional statement

Almost all programs are based on conditions. A login is performed only if user
and password are known in the database.
A lift moves to other floors only ifwe press a button and nobody passes through
its doors while they are closing, otherwise it opens the doors and starts the
whole procedure over.
A countdown rings if its value reached 0 … and so on.
Everything we do daily, and everything that surrounds us is based on basic
if…else flows, and the same can be applied to any piece of software that may
or may not do something.
The following code is a made up example on how our driving routine is based
on conditions.

54

function letsDrive(car, where) {

// we start the engine only if off
if (car.isEngineOff()) {
car.startEngine();

}

// let's move carefully in case of rain
if (global.weather.isRaining()) {
car.goSlowerThanUsual();

} else {
car.goUsualSpeed();

}

// how about the radio?
if (Date.now() < global.today.LATE_MORNING) {
car.radio.findMorningNews(); // every day

} else if (where === 'beach') {
car.radio.findSurfingSongs(); // on vacation

} else {
car.radio.findRockNRoll(); // every evening

}
}

var myNewCar = new Car();
// and every time I need to drive
letsDrive(myNewCar, 'my office');

An if doesn’t always require an else, and there could be an optional else if in
between.

ternary operator

The most used inline if…else shortcut is provided by the ternary operator that
looks like a question mark: ?
It does one thing: it returns its first value if the condition is true or the second
one, if the condition evaluates to false.

var ternaryResult = (14 / 7 === 2) ? 'correct' : 'back to school!';

55

switch statement

If the ternary operator is a shortcut for an if…else, the switch statement is the
shortcut for a long list of if…else if…else if…else conditions.

function isLetterInAFRange(letter) {
var result;
// switch syntax, pass any value
switch (letter) {
// it will be compared for each case like
// if (letter === 'G') …
case 'G':

// if the comparison is true, it'll execute
// the following operation
result = false;
// you can arbitrary break it, exiting from the switch
break;

// or you can create different entry points, a.k.a. “fall-through”
case 'A': // else if (letter === 'A')
case 'B': // else if (letter === 'B')
case 'C': // else if (letter === 'C')
case 'D': // else if (letter === 'D')
case 'E': // else if (letter === 'E')
case 'F': // else if (letter === 'F')

result = true; // all these conditions return true
break;

// no condition satisfied? We have a default fallback
default:

result = false;
break; // optional within the `default` part

}
return result;

}

The number of else if (letter === 'A') { … } else if (letter === 'B') { … }
would have made your code look like an octopus designed by Picasso.

logical || operator (read as OR)

Instead of many else…if that would result in performing the same action you
can use ||.
Accordingly, the previous example can be re-written in the following way:

56

function isLetterInAFRange(letter) {
if (
letter === 'A' || letter === 'B' || letter === 'C' ||
letter === 'D' || letter === 'E' || letter === 'F'

) {
return true; // whenever a function returns, it exits from it

}
// this gives you the ability to avoid a redundant

return false; // `else` because there's really nothing else to do
}

logical && operator (read as AND)

On the contrary of the || operator, the && operator keeps checking conditions
only if the previous one has been validated. This is probably one of the most
important concepts to keep in mind.
For instance, the following ATM operations will not be executed together, but
one at a time.

function getMoney() {
if (
cardIsValid() && // is the card valid? OK … next
pinCodeIsValid() && // does the user know the pin? Next!
userSelectedAmount() // does the user need a certain

// amount of money? OK… next
) {
return getAmountSelectedByUser(); // all good, everything went OK

}
return 0; // something went wrong above

}

It is also possible to combine both operators, somehow simulating what the
ternary one can do.

// ternary operator via boolean logic
console.log((1 < 2) && 'OK' || 'EPIC FAIL'); // shows 'OK'

// equivalent of the ternary operator
console.log((1 < 2) ? 'OK' : 'EPIC FAIL'); // shows 'OK' too

However, whenever we need a ternary logic we should probably use the
appropriate operator.

57

truthy and falsy values

The if or else…if statement, as well as ternary or logical operators, are very
merciful. It doesn’t matter if we check an actual boolean type true or false
value. The value false, together with the number 0, the empty "" string, the
null value, the undefined, and the exceptional NaN references, are considered
“falsy” values. This means that everything else is considered “truthy”, as if it
was a true condition.

if ({}) console.log('any object is truthy');
if ([]) console.log('even empty arrays');
if (-1) console.log('or negative numbers');
if (function(){}) console.log('or functions');

// falsy values ... all checked, not a single one passes
if (false || NaN || "" || 0 || null || undefined) {

console.log('this message will never be shown');
}

antipattern

Not necessarily related to the boolean logic, the term anti-pattern indicates
some bad practice, or some logic with well-known and undesired side effects
in our code. For instance, simulating a ternary operator, instead of using it,
constitutes an anti-pattern.

true ? console.log('OK') : console.log('FAIL'); // 'OK' → correct
true && console.log('OK') || console.log('FAIL'); // 'OK' then 'FAIL'

This happens because console.log always returns undefined which is “falsy”!

DOM

The Document Object Model refers to “the parallel world” represented by
any Web page. It’s a huge set of interfaces that describe the capabilities
and behaviors of every HTML element, SVG and XML node, or foreign object
available through the document tree.
Whenever we deal with an object that comes from a page, we can call it a DOM
Node.

58

tree

Many DOM nodes can contain other elements. The hierarchy is nested, from a
universal root node down to every single node, with possible multiple nodes at
the same level.
Following there is an example of a simple HTML page and its DOM tree.

html
head◂───────────┴──────────────▸body┐

title◂──┘│ └─────▸meta main◂┘
link◂────┘ section◂──────┘ └───────────▸section

│ │ │ │
article◂───┘ └───▸article article◂───┘ └───▸article

Describing the tree above in JS, you can imagine the following object represen-
tation.

({ nodeName: 'html',
children: [
{ nodeName: 'head',

children: [
{ nodeName: 'title'},
{ nodeName: 'meta'},
{ nodeName: 'link'}

]},
{ nodeName: 'body',

children: [
{ nodeName: 'main',

children: [
{ nodeName: 'section',
children: [

{ nodeName: 'article'},
{ nodeName: 'article'}

]},
{ nodeName: 'section',
children: [

{ nodeName: 'article'},
{ nodeName: 'article'}

]}
]}

]}
]})

59

It must be said that DOM nodes provide much more than just a nodeName or a
children property, and the best place to read documentation about it is the
W3C website.
The entire reference is explained through interfaces, and its written inWeb IDL
format.

Web IDL

It is a dialect used to describe DOM related interfaces, and what matters most
to us is to know what an interface’s purpose is, and to somehow be able to read
what it is expected when using such an interface.

EventTarget registration interface

As an example, if you read the definition of an EvenTarget (an interface
implemented by almost every DOM node one can think of), you’ll find it
described as following:

// the interface name, if it implements other interfaces
// it will have a colon after the name and what it implements
interface EventTarget {

// the returned type // the method or property name
void addEventListener(

// in ParameterType and name
in DOMString type,
in EventListener listener,
in boolean useCapture);

void removeEventListener(
in DOMString type,
in EventListener listener,
in boolean useCapture);

boolean dispatchEvent(in Event evt)
raises(EventException);

};

The above description basically states that every node will have an addEventLis-
tener('type', listener, false)method in charge of registering an event and its
removeEventListener counterpart, plus a dispatchEvent(event)method that could
eventually raise an Event exception.

60

The documentation provides a more detailed explanation of every single
method and the meaning of each accepted parameter, but there are a few
new terms here.
It would be good to clarify them as to better understand what we’re talking
about.

void

The JavaScript equivalent of the void term would be undefined. It’s also a JS
historical operator, which is similar to typeof, but always returns undefined no
matter what.

console.log(void 0); // 0 or any other value, logs undefined
console.log(void "hello"); // undefined

DOMString

Not much different from a generic JavaScript string. Nothing new to learn for
once.

EventListener

The W3C documentation is great because whenever there is an interface
you don’t know, there usually also is a link where the interface is described.
Regardless, we can easily say that the EventListener is probably the most
misunderstood interface on the web.
Let’s see how it has been described via Web IDL in the year 2000.

interface EventListener {
void handleEvent(in Event evt);

};

Whenever an event is registered, we can pass an object with a handleEvent
method.
Below there is an example code that works via a browser console. Once you
write everything in there, all you have to do is to click anywhere on that page,
except on links.

61

var listener = {
// if there is a handleEvent method,
// it will be invoked when the event occurs
handleEvent: function (event) {
// where was this listener registered?
var node = event.currentTarget;
// is this listener the document indeed?
console.log(node === document); // true
console.log(this === listener); // true
// let's clean up by removing this listener
// the event.type is always available
// it is the string we used to register our listener
node.removeEventListener(event.type, this);

}
};
// we register our listener, it should log once if we click
document.addEventListener('click', listener);

A handleEventmethod can also be inherited through a class, confining the logic
within each instance.

function ClickCounter(el) {
// we register the click for this element
el.addEventListener('click', this);
// we also register a way to eventually drop it
el.addEventListener(this.drop, this);

}

ClickCounter.prototype = {
drop: 'drop:click-counter', // custom event type
value: 0, // where the count starts
handleEvent: function (evt) {
var el = evt.currentTarget;
if (evt.type === this.drop) { // remove the listener

el.removeEventListener(evt.type, this);
} else {

el.textContent = ++this.value; // show the count
}

}
};

// here is a new ClickCounter instance that shows clicks on the body
new ClickCounter(document.body);

62

EventListener using a function

The reason this interface is considered the most misunderstood is that almost
everyone uses functions, instead of objects, to register events.
“Why is that?” Back in 2000 when developers were trying to make events
work in both standard and non standard browsers, there was no easy way to
replicate the object behavior via ugly attachEvent and detachEvent non standard
alternatives.
The fallback to “functions only” somehow compromised old books, articles,
libraries, and frameworks, introducing problems that were already solved with
the standard interface.

// same logic as seen before, using a function
document.addEventListener('click', function (event) {

// where was this listener registered?
var node = event.currentTarget;
// is this listener the document indeed?
console.log(node === document); // true
console.log(this === document); // true again, redundant info
// if we don't name our function listener
// we won't ever be able to remove it
// because we don't have a reference, i.e.
// node.removeEventListener(event.type, ???); ← what could we use here?

});

Whenever we use a function as the event listener we automatically opt in for
the following:

• the this execution context always points to the event.currentTarget node
• we’ll eventually need a companion object if we want to increment a
counter or do anything else that could be related to a generic state of
the node or of the component

• if we have no reference, we won’t ever be able to “unsubscribe” later on

To solve the first two points of the above list of inefficiencies, the community
came up with an idea: the creation of functions on-demand whose context is
statically trapped.

63

// utility example
function bindTheContext(fn, context) {

// return a function that uses ▲ `context` variable
return function () { // and explicitly force fn to use context each time
return fn.apply(context, arguments);

};
}

function whoIsIt() { return this; } // it just returns the context

var me = {name: 'Andrea'};
var alwaysMe = bindTheContext(whoIsIt, me); // now trapped forever!

alwaysMe() === me; // true → it's always me
alwaysMe.call({}) === me; // true → it's always me
alwaysMe.call(document) === me; // true → still always me!

function bind

After being widely adopted, the “function executed with a trapped context”
pattern became standard, and so the Function.prototype.bind was born. It also
uses partial arguments.

function sum(x, y) {
return x + y;

}

// it creates a "function"
// that every time it's invoked
// will use null as execution context
// and the number 5 as its first received argument
var sum5to = sum.bind(null, 5);

console.log(
sum5to(7), // 12 → 5+7
sum5to(1), // 6 → 5+1
sum5To(0), // 5 → 5+0
sum5To(10, 20) // 15 → 5+10 (20 ignored)

);

Thanks to this method, now we have the ability to reproduce the ClickCounter
class.

64

function ClickCounter(el) {
// the instance inherits these two methods so that
// we can make their own methods, trapping the instance itself once…
this.increment = this.increment.bind(this);
this.stopListening = this.stopListening.bind(this);
// … that gives us the ability to register these methods
// and later on to be able to remove them at any time
el.addEventListener('click', this.increment);
el.addEventListener(this.drop, this.stopListening);

}

ClickCounter.prototype = {
drop: 'drop:click-counter',
value: 0,
// specific method to increment
increment: function (evt) { // this one will be the trapped
evt.currentTarget.textContent = ++this.value;

},
stopListening: function (evt) {
var el = evt.currentTarget; // we can unsubscribe both methods!
el.removeEventListener('click', this.increment);
el.removeEventListener(this.drop, this.stopListening);

}
};

// here is a new ClickCounter instance that shows clicks on the body
new ClickCounter(document.body);

Remember: to unsubscribe from an event, you must pass the exact same
reference.

Event

Since the beginning of its time, JavaScript has demonstrated its strength and
capabilities as an excellent event-driven programming environment. You can
register any sort of event type, and pass around any sort of data, in both
browser and server-side engines.
However, the implementation of node.js, an environment that lets you run
JavaScript-based programs entirely on the server-side, differs in many ways
from the one in the browser.

65

browser events

Already introduced in the previous pages, browser events can be split into two
major categories:

1. user or system events
2. custom events, also known as “synthetic”, which are events generated
via code.

When you surf the Web and type on your keyword, click with the mouse, touch
the screen with a finger, or use a generic pen pointer, you are creating and
implicitly dispatching user events that are specially trusted as user intent.
mousemove, touchstart, keypress, input, load, focus and blur are only few of the
dozens of well known events available in every browser by default. If you search
for “DOM events” in Wikipedia, there’s quite a good list of most of the best-
known events.

bubbling and capturing

It should be now clear that the DOM contains trees. A peculiarity of each tree
is the possibility to reach into each branch, a procedure also described as DOM
tree traversing. By default, every event does this traversing, starting from the
document, reaching the node that was the event target, and bubbling up again.

// per each element of this Array …
[document, document.documentElement, document.body].forEach(function(el) {

// add the same event type …
el.addEventListener(this.type, this, true); // true for capturing
el.addEventListener(this.type, this, false); // false for bubbling

// false is the default
}, {

type: 'click', // the event type
handleEvent: function (e) { // the listener
console.log(

e.currentTarget.nodeName, // where the listener
// was added via forEach

e.target.nodeName, // the node that created
// this event notification

e.eventPhase === e.CAPTURING_PHASE // the event phase
);

}
});

66

The e.CAPTURING_PHASE constant is actually inherited from the Event constructor.
This is one of the differences between the classes in JavaScript, and the classes
in the DOM.
The document.documentElement is the always available HTML root node. To better
understand what we are doing, now it’s probably a good time to switch to an
empty page. It is usually possible to do this by simply typing about:blank in the
URL bar, which is the one where we usually write the website address such as
www…, the one we could use to do a search.
If you open the console and write the previous forEach code in there, once you
press enter and click on any available white space on the page, you should see
the following:

#document BODY true // it starts capturing from the document
HTML BODY true // it traverses the HTML node to reach the target
BODY BODY false // it reaches the target, nothing to capture anymore
BODY BODY false // it starts bubbling up from the target
HTML BODY false // so it will trigger the parent HTML node listener
#document BODY false // until bubbling reaches the document listener

Again, here is what happens in the capturing phase: document → html → body

And here is what happens in the bubbling: body → html → document

event.stopPropagation()

Traversing can be expensive, especially when in huge nested trees.
If a specific listener has no meaning for other nodes, stopPropagation can
interrupt the event bubbling or capturing phase, dropping the current event’s
propagation.
Take the previous example with click listener. Simply adding e.stopPropagation(),
at the beginning of the handleEvent method, never lets the click reach other
nodes.

#document BODY true // e.stopPropagation() on document capturing phase

The line above is all you are going to see in the console. The target, which is the
document.body, never sees the event coming. The same happens, if we stop the
event propagation during a bubbling phase. Once it reaches the event.target,
it won’t bubble up anymore.

67

body → html → document // regular BUBBLING phase
document → html → body // regular CAPTURING phase

evt.stopPropagation();
body →│ // stop BUBBLING
document →│ // stop CAPTURING

event.preventDefault()
If a node has some special action associated to it, the .preventDefault()method
prevents that action from happening. Are you clicking on a link? Preventing the
default won’t let the browser follow that link! Are you filling out some form?
Preventing the default won’t let you change the text in the input or it won’t let
you submit that form.

function justPreventDefault(evt) { evt.preventDefault(); }

// it won't open the link
a.addEventListener('click', justPreventDefault);

// it won't let you write in `input`
input.addEventListener('keydown', justPreventDefault);

With the touch events, you can even prevent pages from scrolling!

CustomEvent
Whenever we want to create our own synthetic events, the DOM provides its
own constructor which Web IDL describes as follows:

// the following means → new CustomEvent('event-type', {detail: anyValue})
[Constructor(DOMString type, optional CustomEventInit eventInitDict),
Exposed=(Window,Worker)] // available on pages and web workers

interface CustomEvent : Event { // implements Event interface
readonly attribute any detail; // the main difference with Event

};

// it describes the CustomEventInit object expected as an option
dictionary CustomEventInit : EventInit {

any detail = null; // by default, detail property will be null
};

Well, maybe the Web IDL format is a bit lengthy, but it surely provides all
necessary details.

68

// TL;DR (Too Long, Didn't Read)
var myEvent = new CustomEvent('my:type', {detail: {

any: 'sort',
of: 'data',
iCould: function () {
return 'possibly think about';

}
}});

// so that if we have such listener in some node
document.addEventListener('my:type', function (evt) {

console.log(
evt.type,
evt.detail,
evt.detail.iCould()

);
});

// we can dispatch the event, invoking the associated listener
document.dispatchEvent(myEvent);

Since the CustomEvent interface also implements the generic Event, each previ-
ously described method, such as evt.preventDefault(), evt.stopPropagation(),
and the currentTarget property will be available, making the event look “real”.

EventEmitter

When it comes to server-side events, taking node.js as the main example, the
entire capturing and bubbling story doesn’t make sense anymore: there is no
tree to consider there, just a possible amount of listeners ready to react to
asynchronously emitted events.
The type of received arguments is also very different, and the most commonly
used “signature” for listeners is the function (possibleError, possibleReturn)
{} one.

signature

In JS and in programming in general, a function signature refers to the whole
description of the generic function: its name, the names of all expected
parameters, the scope in which the function always executes, and other
possibly relevant info about it.

69

// the function sum accepts two arguments, and returns their sum
var sum = function (a, b) { return a + b; };
// the function mul also accepts two arguments but it does something else
var mul = function (a, b) { return a * b; };

In short, both sum and mul functions above have the same signature.

parameters

When we define the name and the amount of possible arguments that any
developer can pass when invoking a function, we are actually defining the
”function parameters”. The reason why we talk about arguments instead, is that
this reference exists and gets created every time a function is invoked, making
the relation easier to understand.

node.js events

Events are provided by objects that expose a mechanism to register and
eventually remove them. To create objects that are able to emit events, we
need the events module.

var events = require('events'); // a CommonJS module example
var EventEmitter = events.EventEmitter; // which exports EventEmitter

var nodeEventTarget = new EventEmitter; // which is a constructor

nodeEventTarget.on('some-event', function (err, data) { // ← node.js signature
if (err) {
console.error('something terrible happened', err);

} else {
console.log('Data received!', data);

}
});

// let's try a successful notification
nodeEventTarget.emit('some-event', null, {some:'data'});
// now let's try a failing notification
nodeEventTarget.emit('some-event', new Error('Oh Dear!'));

While obj.on(type, listener) is a shortcut to obj.addListener(type, listener),
there is no obj.off method but a obj.removeListener(type, listener) one.

70

The EventEmitter class historically accept only functions as listeners, no
objects and therefore no handleEvent.

WeakMap

Every time you add a listener to an object that acts like an EventTarget, you are
basically creating some sort of “invisible relation” between those two objects.
As an example, if we don’t have a reference to a generic listener, we cannot
possibly remove it from the node, or the object, which we used to subscribe
for a specific event. At the same time, that same object does not expose a
mechanism to reach any of its subscribers.
Back to the listener object example, whenever you perform the following
operation:

node.addEventListener('event-name', {handleEvent: function (e) {}});

you tell the browser to somehow link the fresh new listener object to that
node. However, if you remove the node from the document, so that it becomes
unreachable and it can be removed from the memory, its object listener also
disappears from the memory.
This kind of relationship between objects is called “weak”, and it can be
manually created.

var wm = new WeakMap; // create a weak map instance
function weakData(obj) { // relate a generic object

if (!wm.has(obj)) { // which if not in the `wm` instance
wm.set(obj, {}); // will link it with `{}` as a value

}
return wm.get(obj); // returns the associated link

}

var myReference = {}; // any kind of object!

weakData(myReference).relationship = 'ninja'; // add a property

console.log(
myReference.relationship, // the object is unaffected
weakData(myReference).relationship // the weakly referenced is

);

71

Symbol

Mentioned as type right at the beginning of this glossary, symbols are special
keys used to set or read uniquely identified object properties. They can be
useful to avoid name clashes.

var obj = {};
var uniqueKey = Symbol('unique'); // create a key named “unique”
obj[uniqueKey] = 123;
var anotherKey = Symbol('unique'); // create another key named “unique”
console.log(

obj[uniqueKey], // 123
obj[anotherKey] // undefined, it's a unique key!

);

A peculiarity of Symbol is that it cannot be created as new Symbol() or it will
throw an error. “… but why?” Because typeof Symbol() === "symbol" which is
consistent with the way constructors create other primitives such as "string",
"boolean", or "number".
The following is a common expectation problem with JavaScript primitives cre-
ated via new: js typeof new String(''); // "object" which is wrong if one ex-
pect "string" typeof String(''); // "string" which is usually correct/expected

primitives

Any value where typeof returns something other than "function" or "object"
(and the value is not null) is primitive. The main characteristic of primitives
is that it is not possible to attach properties to them: these are all immutable
values.

var t = true; t.key = 'value'; // no error, but also no value
var s = 'string'; s.key = 'value'; // same as above
var i = 0; i.key = 'value'; // again …
var k = Symbol(); k.key = 'value'; // … and again

console.log(t.key, s.key, i.key, k.key); // all things are undefined

72

Object.getOwnPropertySymbols(obj) → arrayOfSymbols

The default symbols descriptor is configurable, enumerable, writable, and
with a generic value, like any other property. However, symbols are “in-
visible” for common operations such as for/in loops, Object.keys(obj) or
Object.getOwnpropertyNames(obj).

var obj = {};
var key = Symbol();
obj[key] = 'value';
for(var k in obj) console.log(k); // nope, nothing happens here
console.log(

Object.keys(obj), // [] → it's an empty Array
Object.getOwnPropertyNames(obj), // [] → once again an empty Array
Object.getOwnPropertySymbols(obj), // [Symbol()] → finally we found it!
key in obj // true → `in` operator works as well

);

It is important to remember that even if they are less “in your way”, symbols
are not private.
One should also keep in mind that they are just like properties: if the intention
is to create an unobtrusive relation between two objects, we are still better off
with a new WeakMap.

shared Symbols

It’s possible to handle globally shared symbols via the .for(key) and the
.keyFor(sym) methods.

var root = this.window || global; // grab the global context
var myKey = Symbol.for('my:info'); // create 'my:info' labeled symbol

// only if not already available
root[myKey] = Math.random(); // assign a random value

console.log(
Symbol.keyFor(myKey), // will return the label 'my:info'
root[myKey], // will return the random value
root[Symbol.for('my:info')] // same as using root[myKey]

);

73

special Symbols
The Symbol primitive constructor has a few public static properties that are also
well known symbols. These properties can be used to change the default way
in which our code works.
As an example, the Symbol.iterator, often aliased as @@iterator, can be used to
describe how a for/of loop would iterate over a generic collection.

for/of loop
In modern JS engines it is possible to iterate over a few collections using for/of.

for (var value of ['a', 'b', 'c']) console.log(value); // 'a', 'b', 'c'

This is possible thanks to the Symbol.iterator “protocol”, a term used to indicate
a specification on how the iterator property should look like, and what it should
return.

var me = {name: 'Andrea', age: 37}; // guess who is it again?

me[Symbol.iterator] = function () { // define iterator protocol
var keys = Object.keys(this), i = 0; // grab all current keys
return { // return an object …
// fat arrow syntax to bind `this`
next: () => { // with a next method …

return { // that every time is invoked
// will return another object
// with two properties

done: keys.length <= i, // done → false until the end
value: this[keys[i++]] // value → like me[currentKey]

};
}

};
};

// we can now grab all values
for (var value of me) console.log(value); // 'Andrea', 37

fat arrow
Modern JavaScript comes with many syntax shortcuts, and fat arrow is probably
one of the most useful one. It doesn’t need the word function to be defined,
and it makes this and arguments references available directly from the outer
execution context:

74

function newJS() {
return () => this;

}
function oldJS() {

return function () { return this; }.bind(this); // explicit bind
}

var obj = {};
var njs = newJS.call(obj);
var ojs = oldJS.call(obj);

console.log(njs() === ojs()); // true, both return `obj` as explicit context

The syntax can be used as a generic function such as

var sum = (a, b) => a + b;
sum(2, 3); // 5

Or it can have a proper function body whenever curly brackets are used.

var cube = (num) => {
num = Math.pow(num, 3);
return num;

};

console.log(cube(3)); // 27 → (3 * 3 * 3)

generator

Let’s consider the previously described Symbol.iterator protocol again. Having
an object that through its .next() method invocation returns a new object
with done and value as its properties is common in various parts of the latest
language specifications. Generators are another example. A GeneratorFunction
is defined as a function with a wildcard *.

function regular(a, b, c) { return; } // this is a regular function
function* generator(a, b, c) { return; } // while this is a generator
// ↑ and suddenly … the wildcard appears

Contrary to functions, generators do not execute once invoked, they create
some sort of “magic” scope that is paused by default and it won’t move on
unless one asks for it.

75

function* playList(groups) { // #1 paused
return groups.length; // #2 ended

}
// nothing happens ... we are paused at point #1
var music = playList(['Pearl Jam', 'Foo Fighters', 'Tool']);

// to reach the generator returned value …
var result = music.next(); // move on until the end
console.log(result); // {done: true, value: 3}

The previously mentioned paused execution refers to the generator and the
generator only, resulting in a non-blocking piece of code. It’s possible to decide
when a generator should pause at any time, using the special yield keyword.

yield

Similarly to a mp3 player’s pause button, every yield pauses a generator
execution.

function* playList(groups) { // #1
var i = 0;
while (i < groups.length) { // until we have listened to all groups
yield groups[i++]; // use groups[i] as value and pause

}
return 'listened to ' + i + ' groups';

}

var music = playList(['Pearl Jam', 'Tool']);

// let's listen to one group at a time
console.log(music.next()); // {done: false, value: 'Pearl Jam'}

// let's have a break, music is paused, can we do something else?
console.log('is this console responsive?', 'yes it is ;-)');

// ok, the music is on again, who was next?
console.log(music.next()); // {done: false, value: 'Tool'}

// awesome!!! any other group to listen to?
console.log(music.next()); // {done: true, value: 'listened to 2 groups'}

When the while loop condition isn’t satisfied anymore, there is no other yield
to pause the music execution. This flags the iteration as done, where the value

76

is optionally the returned one, in this example that is simply the number of
groups that were played.
You can always generate a new playList with other groups and listen to them.

var rock = playList(['Foo Fighters', 'Pearl Jam', 'Tool']);
var classic = playList(['L. van Beethoven', 'W.A. Mozart', 'A. Vivaldi']);

rock.next(); // for the next song I feel like classic …
classic.next(); // actually d'you know what? give me rock again!
rock.next(); // \,,/(>.<)\,,/

generator.next(value) → {done:boolean, value:any}

In previous examples we have only checked what kind of object gen.next()
returned. However, that’s not the only trick as it can also send a value.

function* forever() { // its internal while loop will never exit
var sent = 0; // an integer to increment per each while
while (true) { // it's safe because generators can pause
var received = yield sent++;
// ↑ sent will be the value of the object returned
// when we'll invoke gen.next() the first time
console.log(received); // ← will log the value in gen.next(value)

}
}

It is important to remember that yield pauses “right to left”, that is it sends
out its optional right hand value, and it eventually assigns to its left hand the
gen.next(one).
This explains why the very first time we call .next() we cannot pass in any
value: we simply start the execution of the function, until we stop and receive
the very first yielded value, if any.
Below there is an example that will miss the very first value passed along.

var g = forever(); // g is now paused on top of forever
console.log(g.next('A').value); // first yield is 0, 'A' is ignored
console.log(g.next('B').value); // 'B' received, while loop will yield → 2
console.log(g.next('C').value); // 'C' received, while loop will yield → 3

77

Following a textual attempt to describe what happens while we loop.

function* forever() { g.next('A')──┐
var sent = 0; │

┌─▶ while (true) { ────────────────┼───────────────────────┐
│ ▼ │
└─── var received = ◀──┐ yield sent++; ─▶ {value: 0}─┐ │

│ ▼ │
│ g.next('B') │

} ├───────────────────────────────┘ │
} │ ┌──────────────────┘

│ └─▶ {value: 1}─┐
│ ▼
│ g.next('C')
└───────────────────────────────┘

generator.throw(error)

If something goes wrong during an iteration, it is possible to exit from the
generator either by returning, as in a regular function, or by throwing an error.
The whole point of having generators though, is the ability to control them
from the outside without direct access to their scope or context, but with the
equivalent of the remote control “play/pause” buttons.
The gen.throw(new Error('get out!')) method gives us the ability to also force
the generator to stop its execution, even if nothing wrong happened in its
execution scope.

Promises

If we need to chain a sequence of asynchronous operations we have a few
options:

• nest callbacks if scoped references are relevant
• pass dozens of relevant references to each function needed in the process
• attach any sort of data at runtime and invoke bound methods all over

However, if we want to handle possible errors during this process we are
basically doomed, so this is the moment when a Promise could save the day.

78

A common asynchronous approach A common Promise-based approach
async(input, function (output) { promise(input).then(function (output) {
// use output + do something else // use output + return some value
}); });

There is a subtle but very relevant difference between the classic and Promise-
based approach which is that a Promise instance can be passed around as it is,
and we can then add our logic at any time by simply invoking its .then(callback)
method.

var waitTillThisBookIsFinished = new Promise(
// a new Promise requires a function which will be invoked later on
function (// once this function is invoked, it will receive two arguments:

resolve, // a resolved function to invoke once we our business is done
rejected // a rejected function to invoke in case something goes wrong

) {
var thingsToWrite = 1000; // a thousand things to write
var bookContent = ''; // from no content
while (thingsToWrite--) {
bookContent += 'moOAR content'; // to “All The Things”!

}
resolve(bookContent); // the book is finished and resolved

});

// whoever is waiting for it
waitTillThisBookIsFinished.then(function (content) {

console.log(content); // so that once resolved
// someone could read its content

});

// somebody else
waitTillThisBookIsFinished.then(function (content) {

writeARantAboutTheBook(content); // and someone else could do
// something else

});

Promises are best used with asynchronous code.
The example above is only a walk through the logic involved and not a best
practice.
“One shot” asynchronous operations are indeed the best kind to be solved with
Promises.

79

var userAskedToIgnoreTheApp = new Promise(function (res, rej) {
document
.querySelector('#app-banner button.nope') // app button
.addEventListener('click', function fn(evt) {

evt.currentTarget.removeEventListener(evt.type, fn); // clean up
res(); // resolve!

});
});
// whenever that click happens
userAskedToIgnoreTheApp.then(function () {

localStorage.setItem('do-not-ever-bother-with-bloody-app', true);
}); // ↑ it's just a little synchronous database available on the browser

promise.then(resolved, rejected) → newPromise

If a promise invokes its received reject(anyValue) function, by simply using
.then(notify) there will be no effects: there is also the need for a callback for
possible errors.

var p = new Promise(function (res, rej) { rej('because'); });
p.then(

function yep(result) { console.log('All good!'); }, // will never happen
function nope(err) { console.error(err); } // 'because' error

);

promise.then(resolved).catch(anyError) → newPromise

If an error occurs inside any invokation of the promise chain, only the .catch(function)
will be notified, (not the rejected one).
This is actually an important distinction between these two patterns because
one really involves a manual rejection, while the other reacts even if the
promise has already been resolved.
Following there is an example code.

80

var p = new Promise(function (res, rej) { res('OK'); }); // all good here
p.then(

function yep(result) {
console.log('All good!'); // 'All good!'
throw new Error('actually no!'); // damn it!

},
function nope(err) {
console.error('nope', err); // never will

}
).catch(function (err) {

console.error('caught', err); // here we are
});

promise.then(fn).then(fn).then(fn) → newPromise

Every time we invoke .then(fn) we create a new promise from the initial chain.
Themain difference between promises created via a chain and simple promises
is that for the ones created via a chain we need to return some value or they
won’t receive the result.

var pRoot = new Promise(function (res, rej) { res('OK'); });
var pFirst = pRoot.then(function (info) {

console.log(info); // 'OK' → which is the resolved data from pRoot
return 123; // whoever is chaining from pFirst will receive 123

});
var pSecond = pFirst.then(function (info) {

console.log(info); // 123 → it's a chained, possibly transformed, info
});

If we want to expose the received data we can simply return that, otherwise
we can return a different result, or even nothing.

Promise.all(arrayOfPromises) → newPromise

Asynchronous non-blocking operations are not necessarily related to each
other.
Think about organizing a vacation, one has to think about transport tickets,
booking a hotel, renting a car, and finally preparing some luggage.

81

Promise.all([// planning a vacation through an Array of Promises
new Promise(function (res, rej) {
res('hotel booked!'); // book a room

}),
new Promise(function (res, rej) {
res('flight booked!'); // book the flight

}),
new Promise(function (res, rej) {
res('luggage ready!'); // prepare the luggage

}),
new Promise(function (res, rej) {
res('car rented!'); // rent a car

})
]).then(function (results) {

console.log(results); // awesome, we can GO!!!
// ["hotel booked!", "flight booked!", "luggage ready!", "car rented!"]

});

Whenever any of those Promises fail, the rejected catcher will know, and we
will probably have to reschedule our entire vacation. Let’s hope not!

Promise.resolve(value) → newPromise

If we’d like to create a promise that is already resolved, Promise.resolve(value)
is a handy shortcut. Its counter part is Promise.reject(anyValue) which provides
a similar counter utility.

var p = Promise.resolve('any value');
p.then(function (result) { console.log(result); });

82

Generators and Promises

Let’s have a look at the following utility, it combines both patterns.

// originally explained in https://www.promisejs.org/generators/
function syncLike(genFunc) { // it accepts a generator function

return function () { // and it returns an anonymous function
var // that once invoked

gen = genFunc.apply(this, arguments), // will create a generator
handle = function (result) { // and it will manage it here
// it will return a Promise, no matter what the value is
var p = Promise.resolve(result.value);
// if the generator hasn't finished yet, we can
// chain a new Promise passing `next` and `orFail` as callbacks
return result.done ? p : p.then(next, orFail);

},
next = function (value) { return handle(gen.next(value)); },
orFail = function (error) { return handle(gen.throw(error)); }

; // `next` and `orFail` return ↑ promises chained via `handle`
try { return next(null); } catch(err) { return Promise.reject(err);}

}; // ↑ our journey begins, with a fallback in here ↑
} // it's a Promise “circus” that drives a generator

It’s hard to understand what’s going on until we see a concrete example so
here it is: do you remember when we talked about planning your vacation?
Here it is how it could look like now:

function arrange(what) { // it returns a new Promise that will resolve
return new Promise(function (res, rej) { res(what + ' is ready'); });

}
// an always welcomed activity to do ^_^;
var letsGoOnVacation = syncLike(function* () {

var // multiple var declaration
hotel = yield arrange('hotel'), // it will arrange the Hotel
flight = yield arrange('flight'), // it will arrange the flight
luggage = yield arrange('luggage'), // it will arrange the luggage
car = yield arrange('car') // it will arrange the car too

;
console.log("let's go!", hotel, flight, luggage, car);

});
letsGoOnVacation(); // it will log pretty much everything!
// let's go! The hotel, the flight, the luggage, and the car are ready!

83

Using promises to somehow resolve generators is a nice way to make the code
look synchronous.
If you are wondering whether Promise.all could have been used instead of
having to wait for one action after the other one, the answer is Yes!
And that would have been more efficient, for the simple reason that we could
have executed all those actions in parallel.

// a better approach to multiple asynchronous actions
var letsGoOnVacation = syncLike(function* () {

console.log("let's go!", yield Promise.all([
arrange('hotel'),
arrange('flight'),
arrange('luggage'),
arrange('car')

]));
});

To conclude: Promises’ main strength, but also their main caveat, is the fact
that they cannot be cancelled. That means that we might regret using them
for any operation that could take a long time, as these are probably the wrong
solution to the problem. Instead we could track those through a progress-
friendly operation, something a file download or an image upload could require.

84

Timers

Asynchronous code have been alreadymentioned, but so far without concretely
testing what they are about. Well, asynchronous is not usually something
created just for fun, but rather an inevitable part of our application, such as
a database query, a client/server interaction, a worker notification, and so on.
JavaScript also offers its own mechanisms to schedule the execution of some
arbitrary code at some point in time. The most documented and widely imple-
mented functions to schedule such executions are setTimeout and setInterval,
which are both capable of detaching from the current execution flow in a non-
blocking way.

setTimeout(fn, delay, arg1, arg2, argN) → timerIdentifier

To schedule the invocation of any function at any time in the future and once,
setTimeout is the way.

var t = setTimeout(// scheduling to be executed in 1 second
function laterOn(logMe) { // it will receive arguments, if specified
console.log(logMe);

},
1000, // it's the delay represented in milliseconds
Math.random() // it's the optional argument to pass later on

);

If you are patient enough to wait for a whole second, you’ll see the random
number returned by Math.random() invocation appear in the console. However,
if you are no longer interested in that operation, you can always clean it up, as
long as you hold its identifier.

clearTimeout(timerIidentifier)

If you set a timer, you should be able to cancel it too. This method does exactly
that.

var ti = setTimeout(console.log, 1000, 'content');
clearTimeout(ti); // print will not be invoked in 1 second

setInterval(fn, delay, arg1, arg2, argN) → timerIdentifier

If setTimeout schedules the function to be executed once, setInterval schedules
it to be executed every delay milliseconds.

85

var chronograph = setInterval(// every 1 millisecond!
function (startTime, nDigits) { // invoke this function
var time = new Date(Date.now() - startTime);// check time difference
console.log([

nDigits(2, time.getHours()), // log HH hours
nDigits(2, time.getMinutes()), // with MM minutes
nDigits(2, time.getSeconds()), // and SS seconds
nDigits(3, time.getMilliseconds()) // plus mmm milliseconds

].join(':'));
},
1, // try each millisecond
Date.now(), // using this startTime
// and using this function which converts 1s to '01' or 1ms to '001'
function (n, i) { return (Array(n).join('0') + i).slice(-n); }

);

When starting the above chronograph, a pretty fast list of logs will show how
much time elapsed since its beginning. We can stare at it, or stop it!

clearInterval(timerIdentifier)
It has the exact same logic and behavior as seen for the clearTimeout. If you
want to stop an interval:

clearInterval(chronograph); // stops logging the elapsed time

And that’s it folks, no more frentic logs in our console but that was fun, wasn’t
it?
There is one caveat about timers and that is their scheduled execution. If we set
a timeout at a second, but at some point there’s a long operation that takes 2
seconds, our timer cannot invoke the scheduled callback before the 2 seconds
or longer. The same goes for the interval: if we schedule anything under 10
ms, the timer will try to execute too much, and will keep queuing invokes to
the possibly already delayed execution queue. For instance, in the previous
chronograph the timer was scheduled at 1 ms, but the console didn’t show
every single ms, each was resolved as soon as possible, but never sooner than
4 to 10 milliseconds or more.

requestAnimationFrame(fn) → rafIdentifier
In the DOM User Interface (UI) world, when it comes to update any visible
information on the page, there is a need for a better scheduler than timers
and “rAF” was indeed born for that.

86

(function (startTime, nDigits) { // "rAF" has no extra arguments
(function chronograph(diff) { // so we IIFE our chronograph
var time = new Date(Date.now() - startTime);
document.body.textContent = [

nDigits(2, time.getHours()),
nDigits(2, time.getMinutes()),
nDigits(2, time.getSeconds()),
nDigits(3, time.getMilliseconds())

].join(':');
requestAnimationFrame(chronograph); // and we schedule via rAF again

}());
}(

Date.now(),
function (n, i) { return (Array(n).join('0') + i).slice(-n); }

));

Just like with timers, you can clear a “rAF” via cancelAnimationFrame(rafIdentifier).

process.nextTick(fn)

Node.js has a way to schedule functions and let them execute ASAP, while
keeping the execution queue somehow under control. Whenever you want to
avoid blocking the current thread and schedule an async operation, nextTick
will do it.

requestIdleCallback(fn, waitExpiresIn) → ricIdentifier

Back to DOM, there is the possibility to schedule callbacks when the browser
is less busy, and this is the case for “rIC”.

requestIdleCallback(// it was created to schedule less important tasks
function justChecking() {
console.log('just checking if everything is fine'); // ← not important
requestIdleCallback(justChecking, 2000); // reschedule

},
2000 // ← wait max 2 seconds then run this task if not already done

);

Remember: apart from Promises, every other asynchronous operation can be
cancelled, and “rIC” is no exception. Use cancelIdleCallback(ricIdentifier) and
you are done.

87

template strings

We have covered so much but we still don’t knowmuch about strings, and even
less about templates.
First of all, strings can be concatenated via the + operator, or using the method
.concat(one[, orMore]) inherited from the String.prototype.

var a = 'this ' + 'is ' + 1 + ' string!'; // concatenating via +
var b = 'this '.concat('is ', 1, ' string!'); // str.concat(a, b, c)
console.log(a, b); // it logs the same string twice

Neither single nor double-quoted strings support multiple lines.
Moreover, if one wants to include a dynamic value in a string, they have to
close the quote, concatenate the reference, and eventually open other quotes
again.

Single or double quoted strings Template strings
function greetingsOldWay(name) { function greetingsNewWay(name) {
return 'Hello ' + name + ',\n' + return `Hello ${name},
' thank you for being here!'; thank you for being here!`;
} }

The above comparison shows the difference between quotes and backticks:
with latter we can not only forget about new line problems, but we can also
access local references, including this context.
The syntax is represented by the delimiters ${ } within which we could write JS.

tagged template strings

A special power of back-ticked strings is their “tag-ability”. A tag is a function
that will be executed receiving an array of strings found right before and after
possible curly brackets as first argument, and zero, one or more computed
values as a result of whatever code is present inside those possible curly
brackets found in the string.

88

function tagLogger(statics) { // statics is always an Array
for (var i = 1; i < arguments.length; i++) { // if there are extra args
console.log(statics[i – 1]); // log previous text
console.log(arguments[i]); // log current value

}
console.log(statics[i – 1]); // log last statics string

}
// we can tag any backticked string now and check the console
tagLogger `before ${2 + 3} after`; // → logs 'before ', 5, ' after'

Tag functions are especially handy when it comes to transforming values before
returning them.

function htmlAttributes(markup) {
// declares an output, a regular expression, and a transformer
for (var out=[], re=/[&<>'"]/g, fn=(m) => ('&#'+m.charCodeAt(0)+';'),
i = 1; i < arguments.length; i++

) out.push(markup[i - 1], arguments[i].replace(re, fn));
out.push(markup[i – 1]);
return out.join(''); // transformed

}
var value = '<any"thing>'; // evil input
console.log(htmlAttributes `<input value="${value}">`); // sanitized!

regular expression

The RegExp constructor, together with its instances, brings in a powerful syntax
that is capable of searching, matching, testing, or replacing strings through
special letters with special meanings.
There are many caveats, possible security implications, string encoding issues,
and modern or older ways to deal with them that I don’t think it’d be wise to
partially cover them in here.
What is important to know is their literal syntax representation:

// how to recognize a literal, inline, RegExp instance
var regExp = /^(?:search)*via.[specia-l]chars/gim;
// ▲ begins ends ▲ ▲ optional g,i,m,u flags
// └───────────────────────────────┴──┘

89

JSON
A JS glossary without an explanation about the “JavaScript Object Notation”
would not be credible, so here it is: JSON is the string representation standard
for objects, arrays, strings, booleans, numbers, null and nothing else.

// JSON is a string representation of the following values
var str = '{"name":"JSON","values":["string",1.2,{},[],true,false,null]}';

We can parse a string via JSON.parse(str) or encode any compatible value using
JSON.stringify(compatibleValue) and both methods would accept a callback
as an option. The callback will be invoked while reading each entry or while
reviving values during parsing.

Math
This globally available object is full of methods whose aim is to help us doing
… math!
The most commonly used are Math.pow(num, power), Math.sqrt(num, radix),
Math.max(num1, num2, numN) and Math.min(num1, num2, numN), but you can always
check all of them by name, and eventually investigate their signature online.

// the following is a helper that tells us a lot about any object
function tellMeAbout(that) {console.log(Object.getOwnPropertyNames(that))}
tellMeAbout(Math); // let's see what's in there!

parseInt(string, base) → integerNumber
Whenever you deal with user input, you deal with strings. If you ask for the age
or any other integer number, parseInt will help you transform the user input.

console.log(
parseInt('3'), // we can avoid specifying the base, however
parseInt('11', 2), // 11 in base 2 is 3, not 11
parseInt('08', 10), // 08 in an octal world would be 0, not 8
parseInt('FF', 16) // FF in base 10 would be an error, not hex 255

);

parseFloat(string) → floatNumber
When you need to transform a string into a floating number, parseFloat is the
way to go. It doesn’t accept any extra argument so a parseFloat('FF') would
result into a NaN value, because it would not be recognized as a number or hex
string.

Recent ECMAScript features
Since I’ve started writing this glossary, few things changed already in JS.
The ECMAScript speicifcation is indeed a living, and rolling, standard. This
means that new features becomes available as soon as all staging steps are
matched.
There are few modern topics omitted in this glossary but described online2 and
few others worht a quick exploration.

let declaration

A var declaration can be defined in any line of a generic function but it’s
available in the whole body, even if defined after a condition.

function hoisted(shouldDefine) {
console.log(value); // undefined
if (shouldDefine) {
var value = 123;

}
return value;

}

hoisted(false); // undefined
hoisted(true); // 123

The same happens for generic for loops.

for (var i = 0; i < 1; i++) console.log(i); // 0
console.log(i); // 1

Modern JavaScript engines can declare block scoped variable through the let
keyword, being sure such declarations won’t interfer with the surrounding code.

2https://github.com/tc39/ecma262

90

https://github.com/tc39/ecma262
https://github.com/tc39/ecma262

Recent ECMAScript features 91

function hoisted(shouldDefine) {
if (shouldDefine) {
let value = 123;
// this is the only part of the function
// where accessing `value` won't throw an error
return value;

}
}

for (let i = 0; i < 1; i++) console.log(i); // 0
console.log(i); // thows ReferenceError: i is not defined

rest parameters
There are cases a function could accept one or more arguments.
The rest feature simplifies eventual boilerplate needed to loop over arguments.

function sum(a, b, ...others) {
let c = a + b;
while (others.length) {
c += others.shift(); // returns and drop the value at index 0

}
return c;

}

sum(1, 2, 3, 4); // 10

spread operator
Another simplification, this time for the common .apply(context, arguments)
pattern.

var numbers = [1, 7, -3, 4];

// Math.max accepts N values and returns the higher
Math.max.apply(Math, numbers); // 7
Math.max(...numbers); // 7

Map

Similarly to WeakMap, Map3 instances can relate objects but it’s your responsibil-
ity to remove such relation.

3https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Map

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Map

Recent ECMAScript features 92

Set, and WeakSet

Meant to simplify unique collections related operations, Set4 and WeakSet5 are
similar to Map and WeakMap except the key is internal and their values are
always unique.

Proxy

Recently revisited, the Proxy constructor has the ability to transparently wrap
a generic object and intercept upfront all operations.

var object = {};
var proxied = new Proxy(object, {

has: function (target, prop) {
return target.hasOwnProperty(prop);

}
});

'toString' in object; // true, inherited
'toString' in proxied; // false, not own property

object.toString = function () { return 'hello proxy'; };
'toString' in proxied; // true

The in case is just one of the many possibilities, all described online in the MDN
Proxy page6.

destructuring

It is possible to declare variables while extracting values from arrays or objects.

// destructuring arrays
let [a, b] = ['a', 'b']; // a === 'a', b === 'b'

// destructuring objects
let {a, b} = {a: 1, b: 2}; // a === 1, b === 2

4https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
5https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/WeakSet
6https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/WeakSet
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/WeakSet
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Proxy

JavaScript F.A.Q. on demand
Below there is a list of quick answers to the most frequently asked questions:

• is JavaScript safe? We can write good and bad code with pretty much
every programming language and the more we know about it, the safer it
becomes.

• is JavaScript fast? Overall yes, and on top of that, there are various
efforts from major players to make it as fast as native C or C++ could be.

• what else should I know about JS? I’ve been using JS and its variants
for the last 16 years and yet, I still don’t know the entire API exposed in
every different client or server environment. Every occasion to learn more
is a good one, but first you should try to understand if you are interested
in frontend or backend development. Also, try to read updated books,
because in the last 20 years JS has been changing a lot. It’s good to know
the past, but at the end of the day we are going to use modern features.

• have you heard about transpilers? I have not only heard about them,
but I use them, too. For example, most of the agnostic examples in this
glossary have been successfully tested via babel-node, a command line
interface (CLI) that brings the latest features from the latest ECMAScript
specifications to node.js. Would I use them in production? It depends!

• what does “in production” mean? It’s the official version, currently
offered to every user, of a generic website, application, framework, design
or program. It’s what we deliver, as opposite to what we “prototype” to
quickly test our ideas.

• what does “prototype” mean? I know this glossary might have been
confusing, but when it comes to non-technical JS discussions, a prototype
is a sketch, or a quickly created version of a final product, that should
probably never go to production as it is.

• which FrameWork, library or tool should I use? The one that solves
your problem, if any. Otherwise you are better off with what the frontend
or backend core already offers.

• is JavaScript for web pages only? These days it’s hard to find electron-
ics that don’t run JS. Smart watches, routers, your current computer, or
even colorful led light bulbs, are compatible with some JavaScript engine
or are already running it.

• is JavaScript memory safe? There is aGarbage Collector that takes care
of cleaning up the mess we created. What we can do is to help it doing its
job, for example by not holding values indefinitely.

93

JavaScript F.A.Q. on demand 94

There surely are other questions that I’vemissed here, to which I encourage you
to look for answers. A good place with decent, usually up to date documentation
is the MDN - Mozilla Developer Network7.
There are many other topics I didn’t have the chance to talk about, such as:
Web Workers, Service Worker, IndexedDB, local and sessionStorage, Ajax via
XMLHttpRequest and the recent Fetch API, but I believe that if you made it this
far, you are now able to understand most online technical articles.

Useful links

Mozilla Developer Network developer.mozilla.org
World Wide Web Consortium www.w3.org
WHATWG whatwg.org
Node.JS nodejs.org
Babel JS babeljs.io
YDKJS (book series) youdontknowjs.com
Exploring ES6 exploringjs.com

7https://developer.mozilla.org/en-US/

https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/

	Table of Contents
	
	audience: who is this book for
	how to read this book
	special thanks
	technical editor
	the author
	what this book is about
	what this book is not
	debug
	comments
	operators
	parenthesis
	brackets
	references
	variables
	constants
	types
	invoke
	function declaration VS function expression
	named function expressions
	scope
	private and nested scope
	context
	global context
	method context
	invoking a function via call or apply
	explicit context
	arguments
	Array and generic collections iteration
	for loop
	incremental ++ operator
	Array methods
	array.forEach(callback, context)
	array.map(callback, context) → newArray
	array.filter(callback, context) → newArray
	array.some(callback, context) → boolean
	array.every(callback, context) → boolean
	array.indexOf(value, fromIndex) → number
	prototype and prototypal inheritance
	genericA.isPrototypeOf(genericB) → boolean
	Object.prototype
	object.toString() → string
	native
	class
	constructor
	instance
	inheritance
	the in operator
	for/in loop
	enumerable
	object.propertyIsEnumerable(name) → boolean
	object.hasOwnProperty(name) → boolean
	shared properties
	getters and setters
	descriptors
	Object.defineProperty(obj, name, descriptor) → obj
	try catch finally
	which descriptor for what
	common property descriptor
	common class and native method descriptor
	common defensive method descriptor
	common lazy property descriptor
	Object.getOwnPropertyDescriptor(obj, name) → desc
	Object.defineProperties(obj, descriptors) → obj
	delete
	Object.getOwnPropertyNames(obj) → arrayOfAllNames
	Object.keys(obj) → arrayOfOwnEnumerableNames
	public and public static
	extends
	super
	implements
	interfaces
	trait and mixin
	if else switch and conditional logic
	conditional statement
	ternary operator
	switch statement
	logical || operator (read as OR)
	logical && operator (read as AND)
	truthy and falsy values
	antipattern
	DOM
	tree
	Web IDL
	EventTarget registration interface
	void
	DOMString
	EventListener
	EventListener using a function
	function bind
	Event
	browser events
	bubbling and capturing
	event.stopPropagation()
	event.preventDefault()
	CustomEvent
	EventEmitter
	signature
	parameters
	node.js events
	WeakMap
	Symbol
	primitives
	Object.getOwnPropertySymbols(obj) → arrayOfSymbols
	shared Symbols
	special Symbols
	for/of loop
	fat arrow
	generator
	yield
	generator.next(value) → {done:boolean, value:any}
	generator.throw(error)
	Promises
	promise.then(resolved, rejected) → newPromise
	promise.then(resolved).catch(anyError) → newPromise
	promise.then(fn).then(fn).then(fn) → newPromise
	Promise.all(arrayOfPromises) → newPromise
	Promise.resolve(value) → newPromise
	Generators and Promises
	Timers
	setTimeout(fn, delay, arg1, arg2, argN) → timerIdentifier
	clearTimeout(timerIidentifier)
	setInterval(fn, delay, arg1, arg2, argN) → timerIdentifier
	clearInterval(timerIdentifier)
	requestAnimationFrame(fn) → rafIdentifier
	process.nextTick(fn)
	requestIdleCallback(fn, waitExpiresIn) → ricIdentifier
	template strings
	tagged template strings
	regular expression
	JSON
	Math
	parseInt(string, base) → integerNumber
	parseFloat(string) → floatNumber

	Recent ECMAScript features
	let declaration
	rest parameters
	spread operator
	Map
	Set, and WeakSet
	Proxy
	destructuring

	JavaScript F.A.Q. on demand
	Useful links

